
Extreme Programming System Metaphor:
A Semiotic Approach

Rilla Khaled, Pippin Barr and James Noble
School of Mathematical and Computing Sciences

Victoria University of Wellington
Wellington, New Zealand

rkhaled, chikken, kjx@mcs.vuw.ac.nz

Robert Biddle
Human-Oriented Technology Laboratory

Carleton University
Ottawa, Canada

robert biddle@carleton.ca

ABSTRACT
System Metaphor is one of the key practices of Extreme Pro-

gramming (XP). Unfortunately, the System Metaphor practice is

poorly understood, and is the practice XP teams most commonly

choose to ignore. We provide a simple, structural model of system

metaphors, based upon Peircean semiotics, giving a fundamental

account of the way metaphors can contribute to a software sys-

tem. Using this model, we identify activities that teams can use

to develop metaphors for their systems, and techniques for eval-

uating system metaphors. We hope this analysis will encourage

Extreme Programming teams not to abandon system metaphors,

but rather, to continue to use metaphors to strengthen their de-

velopment practices.

1. INTRODUCTION
One of the twelve core practices of Extreme Programming
(XP) is the System Metaphor. In the glossary of Extreme

Programming Explained, Kent Beck describes it as:

A story that everyone – customers, program-

mers and managers – can tell about how the sys-

tem works [8].

The system metaphor is a means of communicating about
the project in terms that both developers and customers will
understand, and which does not require pre-existing famil-
iarity with the problem domain [9]. The system metaphor
guides the mental models that project members have of the
system, and shapes a logical architecture for the system.

Experience with XP shows that the system metaphor prac-
tice is the most commonly dropped practice, due to a lack of
understanding of how to use it, and the difficulty of finding

an appropriate metaphor [43, 9, 42]. Martin Fowler sums up
a widely held sentiment about metaphor [10, 31, 45, 5] when
he says the following in Chapter 1 of Extreme Programming

Examined:

. . . I still don’t think I’ve seen metaphor ex-

plained in a convincing manner. This is a real

gap in XP, and one that the XPers need to sort

out . . .

. . . I still haven’t got the hang of this metaphor

thing. I saw it work, and work well, on the C3

project, but it doesn’t mean I have any idea how

to do it, let alone how to explain how to do it

[23].

In this paper, we set out to address these issues, our pri-
mary aim being how to understand system metaphor and
secondarily how to do it. To understand system metaphors,
we have analysed their structure using semiotics, the study
of signs. In particular, we use techniques from Peirce, and
Lakoff & Johnson to develop a formal semiotic model of
metaphor in extreme programming. While the model it-
self is an advance for understanding and reasoning about
metaphor, to make system metaphor more accessible on a
practical level, we present a set of activities for finding po-
tential system metaphors, and a set of criteria for evaluating
them, based on our semiotic analysis but capable of indepen-
dent application. XP teams can use these activities and cri-
teria to support their development practices, thus profiting
from our analyses, without necessarily having to appreciate
the semiotic model upon which they are based.

Section 2 of this paper discusses the current state of the
System Metaphor practice within the XP community, and
existing suggestions for improvement. Section 3 contains a
brief introduction to Peircean semiotics, a structural model
of metaphor in general, and the application of semiotics
in Computer Science. In section 4 we present our struc-
tural model of the XP system metaphor, detailing each com-
ponent by applying it to the Chrysler C3 payroll system
metaphor. Section 5 contains a list of process activities for
establishing metaphors suitable for use by XP developers as
well as various metaphor evaluation considerations. In sec-
tion 6 we outline future directions for this work and finally
in section 7 we present our conclusions.

2. EXTREME PROGRAMMING AND
METAPHOR

The System Metaphor practice is a way of explaining the
logical architecture of a system by describing it terms of
something with which developers and customers are already



familiar [10, 9]. A system metaphor facilitates discussion of
the project in language that is accessible to both customers
and developers, providing a shared vocabulary for discussing
system problems and solutions [5, 43]. For developers, a sys-
tem metaphor additionally supports consistency in naming
elements of their programs, including subsystems, packages,
classes, and methods [17].

The paradigmatic XP system metaphor is the Payroll Sys-

tem is an Assembly Line metaphor used for the Chrysler
C3 payroll system [24, 27]. This metaphor makes exten-
sive use of manufacturing concepts, such as lines, stations,
bins, and parts. The C3 metaphor works roughly in the
following manner: a person’s paycheck is a combination of
parts, where parts initially relate to hours worked, e.g. ba-
sic gross pay. The parts move down the assembly line and
are placed into input bins, which then supply these parts
to stations. Each station works in sequence, and processes

the parts, where processing consists of debiting or crediting
further amounts to the initial amount, e.g. income tax, pen-
sion, overtime, union dues, and so forth. These processed
parts are then placed into output bins, and in turn get pro-
cessed by other stations. The final paycheck consists of an
assemblage of all of the output parts resulting from each
station in the assembly line [27].

The metaphor plays a role in shaping the “logical architec-
ture” of the system. In Extreme Programming Explained,
Beck gives explanations of how the metaphor shapes the
architecture [8]:

The metaphor just helps everyone on the project

understand the basic elements and their relation-

ships. Words chosen to identify technical enti-

ties should be consistently taken from the cho-

sen metaphor. As development proceeds and the

metaphor matures, the whole team will find new

inspiration from examining the metaphor.

Consistent with the XP mind set of avoiding investment in
the unknown, the system metaphor is a “cheap” system de-
sign, in that it suggests major system components and their
interactions. Additionally, good metaphors have generativ-
ity, thus allowing people to broach new ideas and questions
regarding the system they would not have otherwise raised
[44]. Said the C3 developers on the topic of their system
metaphor [24]:

The team had the benefit of a very rich do-

main model developed by members of the team

in the project’s first iteration. It gave the mem-

bers of the project an edge in understanding an

extremely complex domain.

Yet for all the benefits of metaphors, in practice they are
difficult to come up with and to use [43, 9, 42]. Unfortu-
nately, there is little literature available on how to choose
and use a metaphor — research on the system metaphor
practice is quite sparse, especially when compared to the
wealth of research considering other XP practices, such as

Pair Programming, Test-Driven Development, or the Plan-
ning Game.

It seems that the typical approach for finding a metaphor
is by a process of trial and error, to see if the suggested
metaphor “fits”. Wake also suggests combining metaphors
if a single appropriate metaphor cannot be found or alterna-
tively using the “näıve” metaphor, where the system stands
for itself. He also suggests dropping the use of the metaphor
if it stops working [43].

The system metaphor faces an even deeper problem how-
ever, which is the question of whether it really is of any help,
especially if the chosen metaphor later turns out to be in-
correct or unhelpful [23, 45, 5, 10]. Studies of projects using
XP have shown not only that chosen metaphors are usually
poor, but also that these poor metaphors are very under-
utilised during development [42, 25]; this is borne out in our
own experience of XP projects in an educational environ-
ment [39]. Typical concerns are that the chosen metaphor
is too weak, thus not providing any insight into potential
architectural plans or providing enough vocabulary, or con-
versely that the chosen metaphor is too strong, thereby forc-
ing system components into a form that they do not logically
“mold” into. Maybe the chosen metaphor is too unfamil-
iar to the team members to provide any value (which may
be the case if an earlier development team established the
metaphor). Other causes of worry are that the metaphor is
misleading and implies relations that do not exist, and also
that the metaphor limits the conception of the system and
provides no insight on how to deal with changes once the
system needs updating [43, 44].

As well as its necessity being under scrutiny, metaphor is of-
ten overlooked. The Extreme Programming Applied authors
Ken Auer and Roy Miller also seem to feel the same way in
the chapter “Painting a Thousand Words”:

A lot of people doing XP say they haven’t

really found a good metaphor or that they use

metaphors only for certain parts of the system.

All of the people we’ve talked to who don’t use a

metaphor haven’t seen it as a significant problem

[5].

Within XP, then, experience with metaphor is somewhat
mixed. Outside XP, however, metaphor is widely recog-
nised as a fundamental part of communication. Not only
is metaphor used extensively in literature, art, film and
everyday speech, it is a tried and true learning technique
which people use very frequently. To harness the benefits of
metaphor, in this paper we set out to improve understand-

ing of XP metaphor, by drawing upon existing theories of
metaphor (in section 3) and then applying those analyses to
the use of metaphor in extreme programming (in section 4).

3. SEMIOTICS
Agile software development is a relatively new methodology,
forged out of the need for adaptivity, faster software deliv-
ery time and communication. In particular it stresses the
need for face to face discussions between team members, and



Representamen:


Referent:


ca
rs mu
st stop

here


Interpretant:


"I should stop

my car"


STOP


Figure 1: A diagram of the Peircean triad as applied

to a stop-sign.

between team and customer instead of relying on formal doc-
umentation. For these reasons, semiotics seems like an ideal
tool for studying and analysing XP system metaphor, as it
is rigourous enough to facilitate structured analysis, while
still retaining enough flexibility to recognise that multiple
view points exist, or that views change over time.

By applying semiotics to XP metaphors, it is possible to
harness a great amount of work done in the general field
of semiotics. Here, we present only enough background to
support our analysis of System Metaphor, as general intro-
ductions to semiotics are widely available [16, 15, 19, 18,
21].

Note that we do not expect XP developers to use semiotics
directly to analyse their own metaphors. Rather, we will
provide a structural model of the System Metaphor practice,
which is grounded in semiotics. Currently there is no such
way to view and understand metaphor, therefore the model
will supply guidelines of sorts for developers to understand,
develop, and evaluate the metaphors that they build into
their systems.

3.1 Peircean Semiotics
Semiotics is the formal study of signs. According to Charles
Sanders Peirce, one of the founders of semiotics, a sign
is “something which stands to somebody for something in

some respect or capacity.” [40, v.2 p.228]; more succinctly,
Umberto Eco has defined a sign as “something that stands

for something else” [19]. In other words, a sign can be al-
most anything — footprints, written words, spoken words,
thoughts, images — anything which can mean something to
someone.

Peirce proposed a triadic model of the sign. In his view,
the sign is divided into three parts: the object or referent,
the representamen and the interpretant. While Peirce made
use of the term object, in this paper we shall use the term
referent to avoid confusion with objects from object-oriented
programs. Figure 1 shows the representamen, referent, and
interpretant of a traffic “stop” sign.

As is shown in the diagram, the representamen is the actual
embodiment of the sign. In this case, the sign in the world:
a red octagon with the word “stop” written on it in white
block letters. The representamen is the part of the sign that

Metaphor

Introduction


Representamen:

Sun


Referent:

Juliet


Interpretant:

Juliet is the sun


Figure 2: A semiotic model of metaphor introduc-

tion.

people encounter and attempt to understand the overall sign
through.

The referent of the sign is the concept cars must stop here.
This is the idea that the sign is meant to convey to those
who encounter it. Other ways of expressing this are that
the referent represents that concept or that it refers to that
concept.

Finally, the interpretant of a sign is the thought or concept
that occurs in an interpreter’s mind when they encounter
the sign. Thus, in the figure, the person who has encoun-
tered the sign correctly thinks that they should stop their
car. There is no guarantee, of course, that this “correct” in-
terpretant will be arrived at. The person could have thought
something like “I should stop smoking my cigarette now.”
Context, convention, and law render this outcome unlikely,
however.

One of the characteristics of Peircean semiotics that makes
it particularly suitable for modelling metaphor is that inter-
pretants can act as representamens for new signs. This type
of process occurs very commonly as it takes place whenever
people have “chains” of thoughts. Joined signs indicate the
process of refinement of a conveyed concept.

3.2 The Semiotics of Metaphor
As a general figure of speech, “metaphor” has a reasonably
broad scope of meaning. For example, The American Her-

itage Dictionary of the English Language defines metaphor
as:

A figure of speech in which a word or phrase

that ordinarily designates one thing is used to

designate another, thus making an implicit com-

parison [22]

More briefly, Lakoff & Johnson have defined metaphor as
“understanding . . . one thing in terms of another” [30]. A
metaphor sign involves the interaction, in some way, of the
tenor and the vehicle of the metaphor, where the tenor is
the thing or concept being described, and the vehicle is the
thing or concept that is used to describe the tenor [20]. In
the example Juliet is the Sun, Juliet is the tenor, and the
sun is the vehicle.

We use the Peircean sign to model the parts of the metaphor,
shown in figure 2. This Metaphor Introduction sign intro-
duces the metaphor and places the vehicle and tenor into



Referent:

Juliet's shining eyes


Representamen:


Juliet is the sun


Interpretant:

Juliet's eyes shine like sunbeams


Metaphorical

Entailments


Figure 3: A semiotic model of metaphorical entail-

ments.

context. The representamen of the sign consists of the ve-
hicle of the chosen metaphor, as it is easy to imagine that
the vehicle “represents” the tenor. In the example, the sun
is the representamen. The referent of the sign is the tenor
of the metaphor, as it is the concept being referred to by
the vehicle, and the relationship between the representamen
and referent is one of reference. In the example, Juliet is
the referent, as the sun represents, refers to, or stands for
Juliet. Finally, the interpretant of the sign is the complete
metaphor, as it is an interpretation that a viewer may ar-
rive at upon encountering the representamen in the context
of the referent. It is a denotative interpretant, which is to
say that its meaning is embodied within its face value. The
interpretant in our example ends up as “Juliet is the sun”.

Lakoff & Johnson carried out substantial work in the area of
metaphor, and introduced the concept of metaphorical en-

tailments [30]. A metaphorical entailment is an application
of some fact about the vehicle of the metaphor to the tenor
of the metaphor. For example, if we consider the metaphor
Juliet is the Sun, bearing in mind that it was Romeo who
made this statement, one of its metaphorical entailments
might be that “Romeo’s world revolves around Juliet”, be-
cause elements in solar systems revolve around the sun, and
this quality gets transferred to Juliet. Another entailment
could be that “Juliet gives Romeo life”, as many facets of
life are dependent on the sun. While a metaphor makes a
direct comparison between tenor and vehicle, metaphorical
entailments consist of all of the indirect resulting qualities
we can deduce about the tenor based on the vehicle.

Semiotically, we model these entailments as instances of a
second sign, the Metaphorical Entailment sign, depicted in
figure 3. The representamen of the metaphorical entailment
sign is the interpretant of the metaphor introduction sign,
e.g. “Juliet is the sun”. The referent of the metaphorical en-
tailment sign is what the representamen refers to or stands

for, typically some characteristic, distinguishing mark or
trait of the tenor of the metaphor. The characteristic in
this example is “Juliet’s shining eyes”. The interpretant

of the metaphor entailment sign is the result of reflecting
upon the metaphor, which (in this case) could be part of
the meaning Romeo ascribes to the metaphor. This entail-
ment is typically closely tied to a characteristic embodied in
the referent. For example, “Juliet’s shining eyes”, which is
a characteristic of Juliet in the opinion of Romeo, is closely
related to the statement “Juliet’s eyes shine like sunbeams”,
which is an entailment of the metaphor.

The difference between the characteristic and the entailment
is that while the characteristic describes the tenor indepen-

Metaphor

Introduction


Representamen:

Sun


Referent:

Juliet


Interpretant:

Juliet is the sun


Referent:

Juliet's shining eyes


Representamen:

Juliet is the sun


Interpretant:

Juliet's eyes shine like sunbeams


Metaphorical

Entailments


Figure 4: A semiotic model of metaphor showing

one particular entailment

dently of the vehicle, the entailment explicitly relates quali-
ties of the vehicle to the tenor. To contrast the interpretant
of this sign with the interpretant of the Metaphor Introduc-
tion sign, this interpretant is connotative, which means that
its meaning is dependent on cultural and personal associa-
tions.

Although the figure shows only a single characteristic as the
referent and a single resulting metaphorical entailment, this
does not mean that the metaphor just refers to this specific
characteristic and entailment. In fact, any other charac-
teristic of Juliet could have replaced the one in the figure.
Semiosis (the process of interpreting signs) can be carried
out repeatedly within the metaphor, each time with a dif-
ferent referent, or characteristic and resulting entailment.
In the example, from the viewpoint of Romeo, one char-
acteristic of Juliet is “Juliet’s shining eyes”. Equally, the
characteristic could have been “Juliet’s beauty”. If the ref-
erent of the sign had indeed been “Juliet’s beauty”, then
the resulting entailment might be “Juliet is radiantly beau-
tiful” as radiance is commonly associated with the sun and
its rays.

To summarise, a metaphor begins by describing its tenor
in terms of its vehicle, with this implied comparison giv-
ing rise to a range of metaphorical entailments. Both the
metaphor itself and the entailments can be taken as signs,
which we call the metaphor introduction and metaphor en-
tailment signs respectively. The two signs are linked by the
chain of semiosis, as the interpretant of the metaphor intro-
duction sign becomes the representamen for the metaphor-
ical entailments. Figure 4 shows our complete structural
model of metaphor. Our model shows how metaphors con-
vey meaning: a representamen is used to describe a referent,
and they become bonded as an interpretent; this bonding in
turn allows characteristics of the original referent to become
interpreted in new ways.



3.3 Computing Semiotics
Given that questions of representation and interpretation
undergird much of computer science and software engineer-
ing, there has been surprisingly little direct application of
semiotics to these areas. Much of the research that has been
done in this area has been directed to the design and anal-
ysis of user interfaces, because these are the most visibly
sign-intensive parts of a computer system [7, 36].

3.3.1 User-Interface Semiotics
Metaphors are a very popular approach to user-interface de-
sign [11, 14, 13], since being popularised by the Xerox Star
and Apple Macintosh [28, 4]. A user-interface metaphor ex-
plains some system functionality or structure (the tenor) by
asserting its similarity to another concept or thing already
familiar to the user (the vehicle). The key to UI metaphors
is that the chosen vehicle is something already familiar to
the user and so the intention is to provide a base level of
comfort and knowledge without necessarily understanding
the underlying system.

We have conducted a semiotic analysis of user-interface meta-
phors, again relying on Peircean semiotics [6]. The result-
ing semiotic structure is very similar to that of figure 4,
with a Metaphor Introduction sign giving rise to a series of
Metaphorical Entailments. For user interface metaphors, of
course, the representamen (vehicle) of the metaphor is typi-
cally a graphical icon, such as a file folder or trashcan, while
the referent (tenor) of the metaphor is the system function
they seek to present to users, such as storing or deleting
data.

3.3.2 Semiotics of Programming
Peter Bøgh Andersen and colleagues have conducted exten-
sive work focusing primarily on computer systems in gen-
eral, as well as on interface design. In his major work, A

Theory of Computer Semiotics, Andersen develops an ex-
tensive theory on how semiotics can be applied to all as-
pects of computing [2]. The book includes an extensive case
study of the application of his methods to a software sys-
tem for a post office. Other important work by Anderson
focusses on whether semiotics is a good approach to human-
computer interaction at all [3]. Semiotics has provided the
inspiration behind some specialised traditional (i.e. non-
Agile, non-Extreme) information systems development and
analysis methodologies. Liu and Stamper, for example, de-
scribe system design techniques explicitly based on semiotics
[33, 34]. Similarly, Marcelo Pimenta and Richard Faust have
taken a semiotic approach to requirements gathering [41].

We have also applied semiotics more generally to program-
ming, in particular to the analysis of design patterns. As
code structures that stand for design ideas, patterns can be
treated directly as signs [37] and this can lead to an effective
categorisation scheme for patterns [38].

3.3.3 An Object-Oriented Programming Sign
Semiotics can also be used to describe object-oriented pro-
gramming [1, 38]. Within the Scandinavian approach, as de-
scribed by Ole Lehrmann Madsen, Birger Møller-Pedersen
and Kristen Nygaard in Object-Oriented Programming in

the BETA Programming Language, programming is seen as
modelling the world:

Representamen:


Map object


Referent:


Phone Book

Interpretant:


The Phone Book is like a

Map object


Figure 5: An OOP sign for an Address Book object

Representamen:


Map binary search


Referent:


Look up a name

Interpretant:


Looking up a name in the

Phone Book is like a Map


binary search


Figure 6: An OOP sign for a LookUp method

A program execution is regarded as a physical

model, simulating the behaviour of either a real

or imaginary part of the world [32].

Programs are often written in a way that reflects similarities
in state and behaviour between program objects and their
users’ or customers’ domains; certainly programmers have
been taught to write their programs in this way for quite
some time [29, 12].

Eyoun Eli Jacobson explains this type of OO modelling
as using objects and classes featuring elements and refer-
ences within the system and representational world, to rep-
resent relevant phenomena and concepts exhibiting similar
elements and references within the system and conceptual
world [26]. For example, consider a Phone Book object,
where a Map object is being used to implement a telephone
directory. The Map object represents the Phone Book, while
the binary search used within the Map represents looking up
something in the book.

We can describe this relationship using semiotics, as shown
in figures 5 and 6. We call these signs “Object-Oriented

Programming” signs, because they capture the basic semio-
sis that is typically latent in object-oriented programming.
In each of these signs, the representamen is the program el-
ement standing in as a representation (the map object or
its lookup method), the referent is the domain concept be-
ing represented (phone book or lookup) and the interpretant

of the sign establishes the representational relationship be-
tween the program object and the external object — the
idea that this particular map object represents that partic-
ular phone book; that this particular binary search lookup
method represents searching the phone book.

4. A STRUCTURAL MODEL OF THE XP
SYSTEM METAPHOR

Extreme Programming system metaphors are, first of all,
metaphors, that is, they describe one thing in terms of
another. XP system metaphors are a specialised case of



Referent:


Money


Representamen:

Assembly Line


Referent:

Payroll System


Interpretant:

The Payroll System is an


Assembly Line


Representamen:

The Payroll System is an


Assembly Line


Interpretant:

Money is like a part on an


assembly line


Metaphor

Introduction


Metaphorical

Entailments


Program

Code


Representamen:

P
art


Referent:

Money


Interpretant:

Money is like a part on an


assembly line


Figure 7: A structural model of XP metaphor showing one particular entailment

metaphor however, in that they specifically serve to de-
scribe object-oriented software systems. We therefore model
XP system metaphors by combining our semiotic models of
general metaphors and of object-oriented systems, as shown
in figure 7. This model of XP system metaphors consists
of three interrelated signs. The first sign introduces the
parts of the metaphor; the second sign deals with the en-
tailments of the metaphor; and the third sign represents
programming constructs resulting from the metaphorical en-
tailments. This section explains how our model works with
respect to an actual system metaphor, the Lines-Parts-Bins-
Stations metaphor used in the C3 system [24].

4.1 The Metaphor Introduction Sign
The first sign is the Metaphor Introduction sign (see fig-
ure 7). The representamen of this sign is the vehicle of the
system metaphor as a whole. For example, the C3 system
metaphor name is “Assembly Line”, so this is the representa-
men. The referent of the Metaphor Introduction sign relates
to the problem domain of the system being built, so the ref-
erent for the C3 project is “Payroll System” which is the
tenor of the system metaphor. Finally, the interpretant of
the Metaphor Introduction sign is the complete metaphor of
the form The Payroll System is an Assembly Line, be-
cause this is the interpretation a team member makes upon
exposure to the metaphor.

4.2 The Metaphorical Entailments Sign
The second, Metaphorical Entailments sign, models the en-
tailments of the metaphor introduced by the first sign (again,
see figure 7). The representamen of this sign comprises
the complete system metaphor and is the interpretant from
the Metaphor Introduction sign — in this case, The Pay-

roll System is an Assembly Line. The referent for the

Metaphorical Entailments consists of a characteristic of the
tenor of the metaphor, that is, one of its important compo-
nents or operations. In the Payroll system example, poten-
tial characteristics include “money”, “paychecks”, and the
“pension deduction” operation.

As with the structural model for general metaphor, although
there are many potential characteristics, we focus on one
characteristic at a time. The interpretant for the Metaphor-
ical Entailments sign consists of a comparison of a fact or
a concept we associate with assembly lines to the Payroll
system, resulting in a statement relating some aspect of as-
sembly lines to the Payroll system, its components, or its
functionality. For example, a major concept behind the Pay-
roll system is that paychecks are simply some combination of
time, money, and additional adjustment factors. Thinking
of potential entailments of the system metaphor upon the
Payroll system, one possible interpretant might be “money
is like a part on an assembly line”. Another might be “a
paycheck can be assembled from time and money” and yet
another might be “a pension deduction is like a station task
on an assembly line”. Each of these interpretants will in
turn give rise to what we call a Program Code Sign, which is
the result of combining concepts from the system metaphor
with object-oriented programming.

4.3 The Program Code Sign
The Program Code sign, then, is a special case of the OOP
sign model presented in the section 3.3.3. As shown in figure
7, each Program Code sign represents an entailment of the
metaphor upon a system component or operation. Program
Code signs are ultimately embodied within the actual code.

This realisation of metaphorical entailments is described in-



formally in the XP literature. Wake writes in Chapter 5 of
Extreme Programming Perspectives:

...By looking at the objects behind the metaphor,

and especially the interactions between those ob-

jects, we can get insights into how our system

does work and how it should work [44].

Program

Code


Representamen:


Part


Referent:


Money

Interpretant:


Money is like a part on an

assembly line


Figure 8: The money part model

The representamen of a program code sign, then, is an inter-
pretant from a metaphorical entailment sign. The referent

of the sign refers to the part of the domain that the con-
cept is being applied to, and the interpretant is the result
of the application of the metaphor-inspired concept to the
domain. Figure 8 shows one example of a Program Code
sign from the assembly line metaphor. The representamen
of the depicted programming concept model is “Part” and
the referent is the domain concept “Money”. The interpre-
tant becomes “Money is like a part on an assembly line.”
This interpretant in fact embodies the meaning of the Pro-
gram Code sign, which corresponds to the interpretant of a
Metaphorical Entailments sign.

Program

Code


Representamen:


Station task


Referent:


A pension

deduction


Interpretant:


A pension deduction is

like a station task on


an assembly line


Figure 9: The deduction station model

Figure 9 shows another example of a Program Code sign
from the Payroll system. The representamen is “station
task”, the Payroll domain operation “Pension Deduction”
is the referent and the interpretant becomes “A pension de-
duction is like a station task on an assembly line.”

The Program Code signs represent the level at which the
metaphor supplies ideas that are directly usable for the sys-
tem, i.e. the coding level. If the metaphor is rich it will yield
a large number of Program Code signs, which in turn pro-
vide a vocabulary for describing a domain, and also propose
a logical architecture for the system.

5. CHOOSING AND EVALUATING A
SYSTEM METAPHOR

The semiotic structural model of system metaphor is an im-
portant contribution to the underlying rationale of Extreme

Programming, because it makes clear how metaphors work
to describe systems. In fact, the model also suggests fur-
ther ideas, regarding how to choose a metaphor as well as
techniques for how to evaluate a metaphor.

In this section we address these two issues, grounding the
discussion with the simple running example: A Bank Ac-

count is a Water Reservoir.

5.1 Choosing a metaphor
Choosing a system metaphor appears to be a rather “hit and
miss” art form at present. Based on the structural model,
we propose a series of activities for supporting XP teams
carrying out the Metaphor practice.

5.1.1 Brainstorming potential metaphors
The top-level sign in the structural model represents the sys-
tem metaphor. The task of initially establishing a metaphor
is, given a system to be built (the tenor of the metaphor, the
referent of the Metaphor Introduction sign), to find a suit-
able vehicle to describe it (the representamen of the sign),
that will lead to useful metaphorical entailments (interpre-

tants).

The first of stage choosing a metaphor, then, is brainstorm-
ing a set of potential metaphors, involving the whole XP
team, and especially including the customer representatives.
Apart from randomly sparked suggestions, to help inspire
potential metaphors, we suggest thinking of ways to explain
the system and its intended functionality to an audience
of non-experts. For example, a non-expert description of
a bank account might be “it is a container; different par-
ties can add or remove the contents of the container; and
the quantity of the substance in the container is impor-
tant”. A next step might be to imagine possible “surround-
ing” metaphors that account for this explanation. Some
metaphor possibilities for a bank account may include wa-
ter reservoir, parking lot, office, city, and hospital. Once
a sufficient number of suggestions has been made, we sug-
gest choosing three candidate metaphors by group consen-
sus which intuitively seem the most promising. For example,
the most suitable metaphors for describing the bank account
could seem to be the water reservoir, parking lot, and hos-
pital metaphors.

5.1.2 Brainstorming the entailments of the metaphors
The second level of the structural model represents the en-
tailments of the metaphor. This is the stage at which it
begins to be revealed whether or not a metaphor will be
applicable to a particular system. Exploring each candidate
metaphor relies on semiosis of the Metaphorical Entailments
sign and individual entailments — in terms of the model,
finding the interpretants and referents of the Metaphorical
Entailments Sign based on the signs representing the whole
candidate metaphors.

Continuing from the last activity, we propose brainstorming
the entailments of each of the top three metaphors first in-
dividually, then again with the entire development team, so
that people are able to come up with their own ideas and
then think of new ideas inspired by suggestions of other team
members. One approach is to try focussing on one part or



characteristic of the system, and then considering it in the
light of the metaphor. Considering A Bank Account is a

Water Reservoir, possible entailments are that the bank
balance relates to the water level; a deposit is like inflow of
water; an overdraw limit is like a minimum water level; ac-
count management is like water treatment; and so on. This
technique can also be applied in reverse, thinking about a
potential entailment of the metaphor and finding parallels
between the entailment and characteristics of the system to
be built. Using the same example as above, the water level
of a reservoir rises and falls, just as a bank balance does; and
the reservoir needs to monitored to maintain a certain de-
gree of water quality, just as bank accounts need a high level
of security management. Less sensible entailments include:
since water reservoirs are required to periodically change
their water, money should therefore be periodically trans-
ferred to another account; and, since water reservoirs also
have a maximum capacity to prevent flooding of surrounding
land, bank accounts should always contain less than some
maximum balance.

After brainstorming the entailments of each candidate meta-
phor, the team should then be in a position to evaluate each
candidate, and therefore choose the metaphor best suited to
the next phase of the project.

5.1.3 Culling the group list and finding the winner
The third level of the structural model deals with Program
Code signs — that is, with the program that will actually be
written. Only some of the suggested entailments will lead
to sensible programs, however, and these entailments need
to be identified as a team so that everyone has the same
understanding of how the metaphors works for the system,
as well as how far the metaphors works.

So, we would encourage the group to evaluate the entail-
ments for each candidate metaphor (as described in the next
section), and “cull” the lists for correctness, consistency and
coherency by crossing off entailments that are incorrect with
respect to the workings of the system, inconsistent with each
other or focus on irrelevant details. Furthermore, the group
should keep only the entailments which support and are con-
sistent with the known workings of the system. Working
with the list of entailments generated for the water reser-
voir metaphor, the money transferral entailment and the
maximum balance entailment are clearly incorrect, so they
should be culled.

At this stage it should be clear how good the three metaphors
are with respect to providing a useful vocabulary for the
system and explaining the known system components and
functionality, while not implying non-existent behaviour. If
there is one metaphor that clearly achieves these tasks, it
should probably be adopted as the system metaphor. If
there is no clear winner and all of the metaphors have their
strengths and their weaknesses, we suggest using a combi-
nation of more than one metaphor for the system.

5.2 Evaluating a metaphor
Although Metaphor is a key practice of XP, currently there
is little guidance about how to evaluate potential metaphors.
As we discussed in section 2, amongst XP practitioners it
seems that a common way to evaluate metaphors is to keep

using them until they seem to stop working. In this section,
we present six criteria, derived from the semiotic model, that
can be used to evaluate a metaphor — either evaluating a
candidate when choosing a metaphor for the first time, or
evaluating a metaphor in an existing system.

5.2.1 How is the metaphor good?
Various metaphors can be helpful in different ways. One of
the first questions to arise when deciding if a metaphor is
good is whether the entailments of the metaphor con-

tain programmable ideas, in other words, ideas that can
inspire actual code. The Program Code signs inspired by
a metaphor should be consistent across a metaphor, to en-
sure the overall coherency of the metaphor and consequently
increase the likelihood of a shared understanding of it. In
turn, the shared understanding should lead to more coher-
ent, consistent and simple code. If more than one metaphor
is used, the consistency applies to each metaphor individ-
ually. Using the Bank Account example, potentially useful
entailments are “Account management is like water treat-
ment” and “An account balance is like the water level”.

A second criterion is whether the metaphor addresses

the major system components and their known func-

tionality. This can be checked by examining the Program
Code signs resulting from the metaphor to see whether Pro-
gram Code signs exist for the major components and also
whether the important functionality is described in a Pro-
gram Code sign. Program Code signs may need to be bro-
ken down into smaller models before this can be checked.
This criterion is similar to the first in that it also probes
the relationship between the metaphor and the system, but
it differentiates itself from the first in the level of detail at
which the metaphor represents the system. From another
perspective, while the first criterion is examining an overall
“story” that the metaphor suggests, this criterion focusses
on “characters”. In the Bank Account example, major sys-
tem components and functionality include bank accounts,

deposits, withdrawals, overdraft, and account management

facilities. Some corresponding concepts in the Water Reser-
voir metaphor are reservoir, inflow, outflow, minimum wa-

ter level, and treatment.

Sometimes a metaphor can still be helpful even if it does
not fully address either of the above concerns. Considering
the metaphorical entailments, a third criterion for a good
metaphor is whether the metaphor entailments pro-

vide a vocabulary with which to describe the system.
While the entailments themselves do not necessarily deal
with concrete programming issues, they provide a way of de-
scribing the workings of the system, which is useful for com-
munication amongst the entire development team, which is
to say developers and clients. For example, some useful lan-
guage and concepts that the Water Reservoir metaphor pro-
vides are reservoir, water supply, inflow, outflow, minimum

water level, treatment, and water quality.

5.2.2 Is the metaphor too poor?
Unfortunately, rich metaphors addressing all major system
components and known functionality are few and far be-
tween. Often combined metaphors make up for this lack of
an all-encompassing metaphor. Yet in order to choose which



metaphors to combine, some amount of attention should be
paid to the disadvantages of each metaphor.

A fourth criterion, then is to examine the metaphorical en-
tailments to see which system components and inter-

actions are left undescribed by the metaphor, in other
words, which parts of the system the metaphor does not ex-
plain. To avoid confusion, each undescribed component or
required functionality should be addressed either by another
metaphor or by means of explicit description. A metaphor
that is not contributing much may need to be dropped, as
too many metaphors complicate the shared understanding
of the system.

For example, the Water Reservoir metaphor uses the idea of
an inflow to represent a deposit. But while a deposit into an
account is a discrete event, water inflows for a reservoir take
place continuously from surrounding water sources, other
reservoirs or perhaps storm water, therefore the idea of a
discrete deposit is left undescribed. Furthermore, while the
party that deposited money could be anyone in the case of
a bank account, in a water reservoir, the water sources are
very restricted.

5.2.3 Is the metaphor misleading?
In contrast to poor metaphors, some metaphors describe
too much. Metaphors of this type are divisible into two
kinds. Metaphors of the first group simply cover too much
ground, and are addressed by the fifth criterion, consid-
ering whether the metaphorical entailments imply

non-existent system components or non-existent be-

haviour. While it is almost impossible to avoid this to
some extent, the metaphor should not imply too much that
is incorrect. As every incorrect entailment is excluded from
the metaphor, progressively the intuitability of the metaphor
decreases, where intuitability describes the extent to which
behaviour and components can be guessed or predicted. In
turn this makes the metaphor less helpful. One example
of non-existent behaviour implied by the Water Reservoir
metaphor is that when the bank account balance reaches a
certain level, it will be unable to accept more money, given
that water reservoirs have a maximum capacity and risk
flooding if they become too full. Another example of non-
existent behaviour is that money must be “thrown away”
periodically to keep the remaining money “fresh”, given that
water in reservoirs is drained every so often to maintain a
certain level of water quality.

The second sort of misleading metaphor is characterised by
being overly strong, and is addressed by the sixth (and last)
criteria: whether the metaphorical entailments make

the system more complicated than it needs to be.
Metaphors exist to enhance system understanding, not to
obscure it. For example, a water reservoir typically needs
pumping stations, turbidity monitoring, filtering, the addi-
tion of chlorine and fluorine, earthquake protection, and in-
volves concepts such as water pressure, salinity, quality, and
so on — none of which has any obvious counterpart in the
world of banking; and efforts, say, to add “money pumps” to
a banking system to keep the “money pressure” high enough
would be quite misguided. The heart of XP is a simple and
flexible system architecture, therefore an overly complicated
metaphor should be avoided at all costs. It is not clear that

the Water Reservoir metaphor really enhances any under-
standing of the system, as all it seems to offer is a set of
synonyms for some system components and behaviour, and
yet it does not provide a full set. Furthermore, the team
probably has more knowledge of bank accounts than they
have of water reservoirs.

6. FUTURE WORK
So far we have successfully applied our model to certain
XP metaphors to obtain useful analyses. The metaphor
choosing and evaluation techniques have also proven them-
selves to be useful. We plan to conduct further case studies
with different metaphors, ranging from metaphors originat-
ing from completed projects, ongoing projects and “exam-
ple” metaphors described in XP texts. Our investigation
will take place in an academic setting, both as research and
as part of one of our 3rd year undergraduate computer sci-
ence cources, and also within industry, upon XP teams and

customers, as some of our other recent work has concerned
the role of the XP customer [35]. Another plan for this work
is to develop the metaphor choosing process activities into
a set of patterns.

7. CONCLUSION
On the topic of metaphor, Martin Fowler says the following
[23]:

“This is a real gap in XP, and one that the

XPers need to sort out”.

In this paper, we have attempted to close this gap. Our
major contribution is a structural model for the XP sys-
tem metaphor, based on Peircean semiotics. This model
considers metaphor as three distinct signs: the denotative
metaphor introduction; the connotative metaphorical entail-
ments; and the resulting program code. The semiotic model
provides a rigourous way to examine the system metaphor
and its subsequent parts. It imparts a structure to our rea-
soning about metaphor, which as a consequence improves
our understanding of metaphor’s workings.

Based on the structural model, we suggest a series of ac-
tivities for establishing and refining metaphors to support
XP teams. We also developed six evaluation criteria for sys-
tem metaphors that focus on the identification of good, poor,
and misleading metaphors. We hope this analysis, and the
techniques based upon it, will aid Extreme Programming de-
velopers in their use of the System Metaphor practice, and
consequently improve the systems built using that practice.

8. REFERENCES
[1] P. B. Andersen. A Semiotic Approach to Programming. In

The Computer as Medium, pages 16–67. Cambridge
University Press, 1993.

[2] P. B. Andersen. A Theory of Computer Semiotics.
Cambridge Series on Human-Computer Interaction.
Cambridge University Press, 1997.

[3] P. B. Andersen. What Semiotics Can and Cannot Do for
HCI. In CHI’2000 Workshop on Semiotic Approaches to
User Interface Design., 2000.

[4] Apple Computer, Inc. Staff. Macintosh Human Interface
Guidelines. Addison-Wesley, 1992.



[5] K. Auer and R. Miller, editors. Extreme Programming
Applied, chapter 23: Overtime Is Not the Answer.
Addison-Wesley, 2002.

[6] P. Barr. A Semiotic Model of User-Interface Metaphor. In
Virtual, Distributed and Flexible Organisations: Studies in
Organisational Semiotics - 3. The 6th International
Workshop on Organisational Semiotics: Virtual,
Distributed and Flexible Organisations, 2003.

[7] P. Barr, R. Biddle, and J. Noble. Icons R Icons. In User
Interfaces 2003: Fourth Australian User Interface
Conference, pages 25–32, 2003.

[8] K. Beck. Extreme Programming Explained, chapter
Glossary. The XP Series. Addison-Wesley, 2000.

[9] K. Beck. The Metaphor Metaphor. Invited speaker at
OOPSLA, 2002.

[10] K. Beck, A. Cockburn, and L. Bossavit. System Metaphor.
http://c2.com/cgi/wiki?SystemMetaphor, 2003. (Various
other anonymous authors.).

[11] A. Blackwell. Metaphor in Diagrams. PhD thesis,
University of Cambridge, September 1998.

[12] D. W. Brown. An Introduction to OBJECT-ORIENTED
ANALYSIS: Objects and UML in Plain English. John
Wiley & Sons, 2002.

[13] J. M. Carroll, R. L. Mack, and W. A. Kellogg. Interface
metaphors and user interface design. In M. Helander,
editor, Handbook of Human-Computer Interaction, pages
67–85. Elsevier Science Publishers, 1988.

[14] J. M. Carroll and J. C. Thomas. Metaphor and the
cognitive representation of computing systems. IEEE
Transactions on Systems, Man. and Cybernetics,
12(2):107–116, March/April 1982.

[15] P. Cobley, editor. The Routledge Companion to Semiotics
and Linguistics. Routledge, London, 2001.

[16] P. Cobley and L. Jansz. Semiotics for Beginners. Icon
Books, Cambridge, England, 1997.

[17] W. Cunningham. System Of Names.
http://c2.com/cgi/wiki?SystemOfNames, 2003.

[18] A. Easthope and K. McGowan, editors. A Critical And
Cultural Theory Reader. Allen & Unwin, 1992.

[19] U. Eco. A Theory of Semiotics. Indiana University Press,
1976.

[20] U. Eco. Semiotics and the Philosophy of Language. Indiana
University Press, 1986.

[21] A. Edgar and P. Sedgwick, editors. Key Concepts in
Cultural Theory. Routledge, London, 1999.

[22] A. H. Editors, editor. The American Heritage Dictionary
of the English Language. Houghton Mifflin Company, 4th
edition, 2000.

[23] M. Fowler. Extreme Programming Explained, chapter 1: Is
Design Dead? The XP Series. Addison-Wesley, 2001.

[24] R. Garzaniti, J. Haungs, and C. Hendrickson. Everything I
Need to Know I Learned from the Chrysler Payroll Project.
In SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications
(Addendum), pages 33–38. ACM Press, 1997.

[25] J. Herbsleb, D. Root, and J. Tomayko. The eXtreme
Programming (XP) Metaphor and Software Architecture.
Technical report, Carnegie Mellon University, 2003.

[26] E. E. Jacobsen. Concepts and Language Mechanisms in
Software Modelling. PhD thesis, University of Southern
Denmark, 2000.

[27] R. Jeffries. Lines Stations Bins Parts.
http://c2.com/cgi/wiki?LinesStationsBinsParts, 1999.

[28] J. Johnson, T. L. Roberts, W. Verplank, D. C. Smith,
C. Irby, M. Beard, and K. Mackey. The Xerox Star: A
retrospective. IEEE Computer, 22(9), 1989.

[29] G. Korienek and T. Wrensch. A Quick Trip To Objectland.
Prentice-Hall, 1991.

[30] G. Lakoff and M. Johnson. Metaphors We Live By. The
University of Chicago Press, 1980.

[31] P. Lappo. No pain, no XP: Observations on teaching and
mentoring extreme programming to university students. In
Proceedings of the Third International Conference on
eXtreme Programming and Agile Processes in Software
Engineering, pages 35–38. Universitá di Cagliari and Free
University of Bolzano-Bozen, 2002.

[32] O. Lehrmann Madsen, B. Møller-Pedersen, and
K. Nygaard. Object-Oriented Programming in the BETA
Programming Language. Addison-Wesley, 1993.

[33] K. Liu. Semiotics in Information Systems Engineering.
Cambridge University Press, 2000.

[34] K. Liu, R. J. Clarke, P. B. Andersen, and R. K. Stamper,
editors. Organizational Semiotics: Evolving a Science of
Information Systems, IFIP TC8 / WG8.1 Working
Conference on Organizational Semiotics: Evolving a
Science of Information Systems, July 23-25, 2001,
Montréal, Québec, Canada, volume 227 of IFIP Conference
Proceedings. Kluwer, 2002.

[35] A. Martin, J. Noble, and R. Biddle. Being Jane Malkovich:
A Look Into the World of an XP Customer. In M. Marchesi
and G. Succi, editors, Extreme Programming and Agile
Processes in Software Engineering, 4th International
Conference, XP 2003, Genova, Italy, 2003 Proceedings,
Lecture Notes in Computer Science. Springer, 2003.

[36] M. Nadin. Interface design: A semiotic paradigm.
Semiotica, 69(3):269–302, 1988.

[37] J. Noble and R. Biddle. Patterns as Signs. In
B. Magnusson, editor, 16th European Conference on
Object-Oriented Programming, pages 368–391, 2002.

[38] J. Noble, R. Biddle, and E. Tempero. Metaphor and
metonymy in object-oriented design patterns. In
Proceedings of Australian Computer Science Conference
(ACSC). Australian Computer Society, 2002.

[39] J. Noble, S. Marshall, S. Marshall, and R. Biddle. Less
extreme programming. In The Proceedings of the Sixth
Australasian Computing Education Conference
(ACE2004). Australian Computer Society, 2004.

[40] C. S. Peirce. Collected Papers. four volumes. Harvard
University Press, 1934–1948.

[41] M. S. Pimenta and R. Faust. HCI and Requirements
Engineering - Eliciting Interactive Systems Requirements in
a Language-Centred User-Designer Collaboration: A
Semiotic Approach. SIGCHI Bulletin, 29(1), January 1997.

[42] J. Tomayko and J. Herbsleb. How Useful Is the Metaphor
Component of Agile Methods? A Preliminary Study.
Technical report, Carnegie Mellon University, 2003.

[43] W. C. Wake. Extreme Programming Explored, chapter 6:
What is the System Metaphor? The XP Series.
Addison-Wesley, 2002.

[44] W. C. Wake and S. A. Wake. Extreme Programming
Perspectives, chapter 5: The System Metaphor Explored.
The XP Series. Addison-Wesley, 2003.

[45] D. West. Metaphor, Architecture, and XP.


