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1 Introduction

We consider the informal concept of a “computable” or “effectively calculable”
function on natural numbers and two of the formalisms used to define it, com-
putability” and “(general) recursiveness.” We consider their origin, exact technical
definition, concepts, history, how they became fixed in their present roles, and how
they were first and are now used. All functions are on the nonnegative integers,
ω = {0, 1, 2, . . .}, and all sets will be subsets of ω. The central concept of the field
of computability theory is the notion of an “effectively calculable” or “computable”
function.

Definition 1.1 A function is “computable” (also called “effectively calculable” or
simply “calculable”) if it can be calculated by a finite mechanical procedure. (For
a more precise description see §3.1.)

Definition 1.2 (i) A function is Turing computable if it is definable by a Turing
machine, as defined by Turing 1936. (See [50] or [93].)

(ii) A set A is computably enumerable (c.e.) if A is ∅ or is the range of a Turing
computable function.

(iii) A function f is recursive if it is general recursive, as defined by Gödel 1934.
(See also Kleene’s variant 1936, 1943, and [1952, p. 274].)

(iv) A set A is recursively enumerable (r.e.) if A is ∅ or is the range of a general
recursive function.1

Later we shall say more of these formal definitions and their meanings. For the
moment we regard these terms strictly with their intensional meaning as above, and
we do not extensionally identify them with each other or with other formal notions

∗The author was partially supported by National Science Foundation Grant DMS 94-00825.
Much of this material was presented in Soare 1996. It is presented in a revised and shortened form
here with the permission of the Association for Symbolic Logic. Helpful suggestions, comments,
and criticisms on preliminary drafts of the former paper are acknowledged by name in Soare 1996.

1This terminology is the same as that introduced in the 1930’s and used since then, except
for the term “computably enumerable,” recently introduced, because Turing and Gödel did not
explicitly introduce a term for these corresponding sets, but just for the computable functions.
Post 1944 explicitly added the empty set as an r.e. set (see [11, p. 308]), which Church and Kleene
had omitted.
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known to be mathematically equivalent (such as λ-definability, µ-recursiveness, or
Post normal systems described later), nor with the informal notions of computable
or effectively calculable under Church’s Thesis or Turing’s Thesis.

The subject of computability theory was accidentally named “recursive function
theory” or simply “recursion theory” in the 1930’s but has recently acquired the
more descriptive of “Computability Theory,” which is also historically accurate
based on the work of Gödel and Turing, the inventors of the two concepts.

In this paper we examine the meaning, origin, and history of the concepts “re-
cursive” and “computable” with an eye toward reexamining how we use them in
practice. The ultimate aim is to ask: “What is the subject really about?” For
example, is it about computability, recursions, definability, or something else?

In §2 we review the origin and history of each concept and the formal defini-
tions. In §3 we consider the Church-Turing Thesis that the intuitively computable
functions coincide with the formally computable ones, and consider using the thesis
as a definition. In §4 we trace the historical development of certain parts of the
subject after the 1930’s and show how the present practices were adopted. General
English usage is discussed in §5, and a conclusion and analysis is given in §6.

We cite references by their number in the order listed in our bibliography but
also in the usual convention by author and year, e.g., [Post, 1944 ] or simply Post
1944, with the year in italics. To save space we omit from our bibliography some
references which appear in Soare 1987, van Heijenoort 1967, or Kleene 1952, and
we cite them as there by year.

2 A Brief History of Computability

2.1 The Concepts of Computability and Recursion

A computation is a process whereby we proceed from initially given objects, called
inputs, according to a fixed set of rules, called a program, procedure, or algorithm,
through a series of steps and arrive at the end of these steps with a final result,
called the output. The algorithm, as a set of rules proceeding from inputs to out-
put, must be precise and definite, with each successive step clearly determined. The
concept of computability concerns those objects which may be specified in principle
by computations, and includes relative computability (computability from an ora-
cle as explained in §4.3) which studies the relationship between two objects which
holds when one is computable relative to the other. For the Gödel-Church-Turing
case of computability on ω (called ω-computability theory) the inputs, outputs, the
program, and computation will all be finite objects, but in Kleene’s higher order
computability such as computability on constructive ordinals, or higher types, com-
putations may be more general objects such as finite path trees (well-founded trees),
and the inputs may be infinite objects such as type 1 objects, namely functions from
ω to ω. In α-computability theory (computability on admissible ordinals) the inputs
and outputs are likewise suitable generalized.

The concept of recursion stems from the verb “recur,” “to return to a place
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or status.” The primary mathematical meaning of recursion (§5) has always been
“definition by induction” (i.e., by recursion), namely defining a function f at an
argument x using its own previously defined values (say f(y) for y < x), and
also using “simpler” functions g (usually previously defined). The advantage of
the Herbrand-Gödel definition of a (general) recursive function (§2.4) was that it
encompassed recursion on an arbitrary number of arguments, and many felt it
“included all possible recursions.”

The Kleene Fixed Point Theorem gave a still more powerful form of this “re-
flexive program call” permissible in programs. Let {Pn}n∈ω be an effective listing
of all (Turing) programs and let ϕn be the computable partial function computed
by Pn. The Kleene Fixed Point Theorem (Recursion Theorem) asserts that for
every Turing computable total function f(x) there is a fixed point n such that
ϕf(n) = ϕn. This gives the following recursive call as described in [93, pp. 36–
38]. Using the Kleene s-m-n-theorem we can define a computable function f(x)
by specifying ϕf(x) : . . . x . . ., according to some program Pf(x), which may men-
tion x and may even call program Px. Taking a fixed point n for f(x) we have
ϕn = ϕf(n) : . . . n . . ., so that the program Pn for computing ϕn can in effect “call
itself” (or more precisely call a program which computes the same function) during
the execution of the program. We call this a “reflexive program call”. Platek’s
thesis 1966 in higher types stresses the role of fixed points of certain functionals
and is often cited as an example of a more general type of recursion. (See §4.4.)

The concept of recursion used here includes: (1) induction and the notion of
reflexive program call, (including primitive recursion and also Kleene’s Recursion
Theorem); (2) the notion of a fixed point for some function, and the more general
Platek style fixed points in higher types (see §4.4); (3) other phenomena related to
(1) and (2) specified for certain situations and structures. However, the concept of
recursion does not include the notion of “computable” or “algorithmic” as described
in the first paragraph.

2.2 The Origin of Recursion

Well before the nineteenth century mathematicians used the principle of defining
a function by induction. Dedekind 1888 proved, using accepted axioms, that such
a definition defines a unique function, and he applied it to the definition of the
functions m+n, m×n, and mn. Based on this work of Dedekind, Peano 1889 and
1891 wrote the familiar five axioms for the positive integers. As a companion to
his fifth axiom, mathematical induction, Peano used definition by induction, which
has been called primitive recursion (since Péter 1934 and Kleene 1936 ), namely

(1) Scheme (V)
{
f(0,−→y ) = h(−→y )
f(x+ 1,−→y ) = g(x, f(x,−→y ),−→y )

where g and h are previously defined functions, and −→y denotes a (possibly empty)
sequence, y1, . . . , yn, of additional variables (parameters). This is Scheme (V) in
the well-known five schemata used to define the class of primitive recursive func-
tions, see Soare [1987, pp. 8–9], or Kleene, [1952, p. 219]. The other schemata
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are: (I) successor λx [x+ 1]; (II) constant functions λx1 . . . xn [k]; (III) projections
λx1 . . . xn [xi]; and (IV) composition f(−→x ) = h(g1(−→x ), . . . , gm(−→x )). The concept
of recursion played an important role in the foundations of mathematics and in the
work of Skolem 1923 , Hilbert 1926 , Gödel 1931, and Péter 1934.

2.3 The Origin of Computable Functions

Mathematicians have studied calculation and algorithms since the time of the Baby-
lonians. Kleene [64, p. 19] wrote, “The recognition of algorithms goes back at least
to Euclid (c. 330 B.C.).” For example there is Euclid’s famous greatest common
divisor algorithm. The name “algorithm” comes from the name of the ninth century
Arabian mathematician Al-Khowarizmi. Along with the development of theoretical
mathematical algorithms there developed an interest in actual calculating machines.
In 1642 the French mathematician and scientist, Blaise Pascal, invented an adding
machine which may be the first digital calculator. In 1671 the German mathe-
matician and philosopher, Gottfried Wilhelm Leibniz, co-inventor with Newton of
the calculus, invented a machine that performed multiplication. Leibniz’s machine,
called a stepped reckoner could not only add and multiply, it could divide, and ex-
tract square roots, by a series of repeated additions, used even today. His stepped
gear wheel still appears in a few twentieth century devices. Leibniz’ main con-
tribution was the demonstration of the superiority of the binary over the decimal
representation for mechanical computers. In the work of Leibniz the symbolic rep-
resentation of problems was combined with a search for their algorithmic solutions.
Sieg [89, p. 73] wrote that Leibniz “viewed algorithmic solutions of mathematical
and logic problems as paradigms of problem solving in general. Remember that he
recommended to disputants in any field to sit down at a table, take pens in their
hands, and say ‘Calculemus’ ! ” Leibniz searched for a universal language (lingua
characteristica) and a calculus of reasoning (“calculus ratiocinator”) with which
to facilitate his program. Around 1834 Babbage invented the idea of an “Analytic
Engine,” which could be programmed to perform long and tedious calculations, and
formulated what Gandy [1988, p. 58] called “Babbage’s Thesis,” that “the whole of
the development and operations of analysis are now capable of being executed by
machinery.” Gandy [1988, p. 57] pointed out that considering Babbage’s Analytic
Engine as a register machine, his proposed operations define precisely the Turing
computable functions.

2.4 General Recursive Functions

These two trends of recursion and computability were brought together in the 1930’s
by Gödel, Church, Kleene, Turing, and others partly in response to questions raised
earlier by Hilbert. At the end of the nineteenth century Hilbert 1899 gave an ax-
iomatization of geometry and showed 1900 that the question of the consistency of
geometry reduced to that for the real-number system, and that in turn to arithmetic
by results of Dedekind (at least in a second order system). Hilbert 1904 proposed
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proving the consistency of arithmetic by what became known by 1928 as his fini-
tist program. He proposed using the finiteness of mathematical proofs in order to
establish that contradictions could not be derived. This tended to reduce proofs to
manipulation of finite strings of symbols devoid of intuitive meaning which stimu-
lated the development of mechanical processes to accomplish this. Closely related
was the Entscheidungsproblem,2 the decision problem for first order logic, which
emerged in the early 1920’s in lectures by Hilbert and was described in Hilbert
and Ackermann 1928. It was to give a decision procedure [Entscheidungsverfahren]
“that allows one to decide the validity3 (respectively satisfiability) of a given log-
ical expression by a finite number of operations” (Hilbert and Ackermann [1928,
p.72–73]). Hilbert characterized this as the fundamental problem of mathematical
logic.

Gödel 1931 proved his first incompleteness theorem which (stated in modern
terms and with an improvement by Rosser) asserts roughly that any consistent
extension T of elementary number theory is incomplete. By arithmetizing the proof
Gödel obtained his second incompleteness theorem which asserts that such a T
cannot prove its own consistency (see [50, §42]), which was a setback for Hilbert’s
program (see Gödel 1958).

In his proof Gödel 1931 [31, p. 158] used the notion of a primitive recursive
function (which he called “recursive” [eine rekursive Funktion]) because these func-
tions were easily representable in Gödel’s formal system P for arithmetic, and were
sufficient to enable him to “Gödel number” all the syntactic objects so that he could
obtain self-reference and thereby incompleteness. Gödel realized, however, that the
primitive recursive functions did not include all effectively calculable functions,4

and in 1934 he proposed a wider class of functions based on an earlier suggestion of
Herbrand. Gödel called these the general recursive functions. Herbrand had written
Gödel a letter on April 7, 1931 (see Gödel [1986 , p. 368] and Sieg [1994, p. 81]),
in which he wrote, “If ϕ denotes an unknown function, and ψ1, . . . , ψk are known
functions, and if the ψ’s and ϕ are substituted in one another in the most general
fashions and certain pairs of resulting expressions are equated, then if the resulting
set of functional equations has one and only one solution for ϕ, ϕ is a recursive func-
tion.” Gödel made two restrictions on this definition to make it effective, first that
the left-hand sides of the functional equations be in standard form with ϕ being the
outermost symbol, and second that for each set of natural numbers n1, . . . nj there
exists a unique m such that ϕ(n1, . . . nj) = m is a derived equation. Kleene 1936,
1943, and 1952 introduced variants of Gödel’s two rules which give an equivalent
formulation of the Herbrand-Gödel definition.

2Kleene [1987b, p. 46] states, “The Entscheidungsproblem for various formal systems had been
posed by Schröder 1895, Löwenheim 1915, and Hilbert 1918.”

3Here “valid” means “true in the standard structure,” not the modern sense of valid as true in
all structures.

4Ackermann in 1928 had produced a function defined by double recursion which was not prim-
itive recursive.
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2.5 The Flaw in Church’s Thesis

In 1930 Church had been studying a class of effectively calculable functions called
λ-definable functions. Church’s student, Kleene, showed by 1933 that a large class
of number theoretic functions were λ-definable. On the strength of this evidence,
Church proposed to Gödel around March, 1934 [11, pp. 8–9] that the notion of
“effectively calculable” be identified with “λ-definable,” a suggestion which Gödel
rejected as “thoroughly unsatisfactory.”

Following this encounter with Gödel, Church changed formal definitions from
“λ-definable” to “recursive,” his abbreviation for Herbrand-Gödel general recursive,
and Church presented on April 19, 1935, to the American Mathematical Society his
famous proposition published in 1936 and known (since Kleene 1952 ) as Church’s
Thesis which asserts that the effectively calculable functions should be identified
with the recursive functions. This is apparently the first published appearance of
the term “recursive” to mean “general recursive.” On the basis of this Thesis,
Church 1936 announced the unsolvability of Hilbert’s Entscheidungsproblem.

Gödel, however, remained unconvinced of the validity of Church’s Thesis through
its publication 1936. This is all the more significant, first, because Gödel had
originated the first formalism, that of the general recursive functions, and the one
upon which Church based his Thesis. Second, much of the evidence for Church’s
Thesis rested on the coincidence of these formal classes, and this was based largely
on Kleene’s use of arithmetization, the method that Gödel himself had introduced
so dramatically in 1931. The reasons why Gödel did not accept or invent the thesis
himself are explained in Davis 1982 and below.

The flaw in Church’s argument [1936, §7] for his thesis was this. Church began
by defining an “effectively calculable” function to be one for which “there exists an
algorithm for the calculation of its values.” Church analyzed the informal notion
of the calculation of a value f(n) = m according to a step-by-step approach (so
called by Gandy [1988, p. 77]) from two points of view, first by an application of
an algorithm, and second as the derivation in some formal system, because, as he
pointed out, Gödel had shown that the steps in his formal system P were primitive
recursive. Following Davis [1958, p. 64] or Shoenfield [1967, pp. 120–121] it is
reasonable to suppose that the calculation of f proceeds by writing expressions
on a sheet of paper, and that the expressions have been given code numbers, c0,
c1, . . . cn. Define 〈c0, c1, . . . cn〉 = pc0

0 · p
c1
1 . . . pcn

n , where pn denotes the nth prime
number. We say that the calculation is stepwise recursive if there is a partial
recursive function ψ such that ψ(〈c0, . . . , ci〉) = ci+1 for all i, 0 ≤ i < n.

If the basic steps are stepwise recursive, then it follows easily by the Kleene
Normal Form Theorem (see §4.1) which Kleene had proved and communicated to
Gödel before November, 1935 (see Kleene [1987b, p. 57]), that the entire process
is recursive. The fatal weakness in Church’s argument was the core assumption
that the atomic steps were stepwise recursive, something he did not justify. Gandy
[1988, p. 79] and especially Sieg [1994, pp. 80, 87] in their excellent analyses brought
out this weakness in Church’s argument. Sieg [p. 80] wrote, “. . . this core does not
provide a convincing analysis: steps taken in a calculus must be of a restricted
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character and they are assumed, for example by Church, without argument to be
recursive.” Sieg [p. 78] wrote, “It is precisely here that we encounter the major
stumbling block for Church’s analysis, and that stumbling block was quite clearly
seen by Church,” who wrote that without this assumption it is difficult to see how
the notion of a system of logic can be given any exact meaning at all. It is exactly
this stumbling block which Turing overcame by a totally new approach.

3 Turing’s Contributions to Computability

In the spring of 1935 a twenty-two year old student at Cambridge University, who
had just given an independent proof of the Central Limit Theorem [109], heard
the lectures of Professor M.H.A. Newman on Gödel’s paper and on the Hilbert
Entscheidungsproblem. Turing worked on the problem for the remainder of 1935
and submitted his solution to the incredulous Newman on April 15, 1936. Tur-
ing’s monumental paper 1936 was distinguished because: (1) Turing analyzed an
idealized human computing agent (a “computor”) which brought together the in-
tuitive conceptions of a “function produced by a mechanical procedure” which had
been evolving for more than two millenia from Euclid to Leibniz to Babbage and
Hilbert; (2) Turing specified a remarkably simple formal device (Turing machine)
and proved the equivalence of (1) and (2); (3) Turing proved the unsolvability of
Hilbert’s Entscheidungsproblem which established mathematicians had been study-
ing intently for some time; (4) Turing proposed a universal Turing machine, one
which carried within it the capacity to duplicate any other, an idea which was later
to have great impact on the development of high speed digital computers and consid-
erable theoretical importance. Gödel enthusiastically accepted Turing’s Thesis and
his analysis, and thereafter Gödel always gave credit to Turing (not to Church or to
himself) for the definition of mechanical computability and computable function.

3.1 Turing’s Idealized Human Computor

In 1935 Turing and everyone else used the term “computer” for an idealized human
calculating with extra material such as pencil and paper, or a desk calculator, a
meaning very different from the use of the word today. (Even ten years later in
his 1946 report [106, p. 20] on the Automatic Computing Engine (A.C.E.) Turing
used the term “computer” to refer to a human with paper, as in [p. 106]. Turing
wrote that A.C.E. can do any job of a (human) computer in one ten-thousandth
of the time.) To avoid confusion we shall follow Gandy 1988 and Sieg 1994 and
use the term “computor” to mean such an idealized human calculating in a purely
mechanical fashion, and the term “computer” for a machine, either an idealized
machine like a Turing machine or register machine, or for a physical device like a
high speed digital computer. The analysis in this subsection was not completely
clear in Turing 1936, and is due almost entirely to Sieg 1994 and 1995, who built
upon Gandy 1988.
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To analyze what it means for a function to be “calculable by an algorithm”
or a “mechanical procedure,” Turing put certain conditions on the calculation.
Turing [1939, §9, p. 249–254] assumed that the computation was being done by
the computor “writing certain symbols on paper,” and that the paper was one
dimensional and divided into squares. He also proposed a set of states (of mind) of
the computor. First, Turing required three finiteness conditions: (F1) the number of
symbols; (F2) the number of squares observed at any one moment; (F3) the number
of states. Turing proposed a number of simple operations “so elementary that it
is not easy to imagine them further subdivided.” Turing allowed the computor to
observe a set of squares and in one atomic operation to: change the set of squares
being observed or print on an observed square; and change its state in accordance
with the following neighborhood conditions: (C1) the computor can change the
symbol only in an observed square and then at most one symbol; (C2) the computor
can move to a different set of observed squares but only within a certain bounded
distance L of an observed square; (C3) the atomic operation must depend only on
the current state and the symbols in the observed squares. Turing also imposed a
determinacy condition (D) that from the state and observed symbols there was at
most one atomic operation which could be performed, but this is unnecessary, since
it is now well-known how to simulate a nondeterministic process by a deterministic
one.5

From the precise description of his computor, Turing then formally defined his
familiar automatic machine, now known as a Turing machine, a finite state ma-
chine with a two-way infinite tape, whose squares contained symbols from a finite
alphabet, with a read/write head which scans one square at a time, and a finite set
of instructions (Turing program), see Soare [1987, p. 12]. Turing called a function
defined by a Turing machine a “computable function.” Using Turing’s analysis we
can now repair the weakness in Church’s argument. (See Sieg [1994, p. 95].) To
show that an effectively calculable function is recursive, take the algorithm which
calculates it, find the technical description of the corresponding computor, then the
associated Turing machine, and then the associated recursive function, from the
equivalence of the latter two classes.

Definition 3.1 A function is computorable if it can be calculated by an idealized
human computor as defined above.

Turing then proved Turing’s Theorem: Any computorable function is Turing com-
putable. Although not proved in a formal system, Turing’s proof is as rigorous
as many in mathematics. Gandy [1988, p. 82] observed, “Turing’s analysis does
much more than provide an argument for” Turing’s Thesis, “it proves a theorem.”6

Furthermore, as Gandy [1988, pp. 83–84] pointed out, “Turing’s analysis makes no
5Hodges [1983 ,p. 96] suggests that Turing’s computor may have grown out of his analysis of a

typewriter: “Alan had dreamt of inventing typewriters as a boy; Mrs. Turing had a typewriter; and
he could well have begun by asking himself what was meant by calling a typewriter ‘mechanical.’
” Turing’s computor does resemble a kind of erasing typewriter with an infinite carriage but with
a finite program.

6Gandy actually wrote “Church’s thesis” not “Turing’s thesis” as written here, but surely
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reference whatsoever to calculating machines. Turing machines appear as a result,
a codification, of his analysis of calculations by humans.” Turing’s Thesis [1936, §9]
is that every intuitively computable function is computable by a Turing machine.
By Turing’s Theorem, Turing’s Thesis reduces to the following thesis (called by Sieg
1994 Turing’s “Central Thesis”).

Turing’s Thesis (TT-Computor).7 If a function is informally com-
putable (i.e., definable by a finite mechanical procedure or algorithm)
then it is computorable (i.e., computed by a Turing idealized human
computor).

Thus, the relationship between: (1) effectively calculable; (2) computorable; and
(3) Turing computable is that: (1) =⇒ (2) by TT-Computor, and also (2) =⇒
(3) by Turing’s Theorem, as Sieg 1994 and 1995 has also pointed out. Subsequent
work has been done to show that more functions fall into one of these two classes.
For example, Sieg and Byrnes 1995 generalized the concept of computorable and
thus weakened TT-computor and strengthened Turing’s Theorem. Similarly, Gandy
1980 analyzed discrete deterministic mechanical devices (DDMD machines) proving
them to be Turing computable, a variant of TT known as TT-DDMD. However,
these results and other subsequent work do not affect the original Turing Thesis
TT-Computor which we regard not so much as a thesis but rather as a definition
of the two thousand year old notion of an algorithmic function. It is now seen to
encompass all modern high speed digital computers as well.

3.2 Accepting Turing’s Thesis

If we review the conceptions of algorithms and mechanical procedures over the last
two millenia from the Euclidean algorithm, Pascal’s and Leibniz’ conceptions of cal-
culating, Babbage’s analytic engine, Hilbert’s and Gödel’s computation of a function
in a formal system, and many others included in the concept of computation de-
scribed in §2.1, we see that they all fit within the computor model. Indeed, we claim
that the common conception of mechanical procedure and algorithm envisioned over
this period is exactly what Turing’s computor captures.

This may be viewed as roughly analogous to Euclidean geometry or Newtonian
physics capturing a large part of everyday geometry or physics, but not necessarily
all conceivable parts. Here, Turing has captured the notion of a function com-
putable by a mechanical procedure, and as yet there is no evidence for any kind of
computability which is not included under this concept. If it existed, such evidence
would not affect Turing’s thesis about mechanical computability any more than

Gandy meant the latter, at least intensionally, because Turing did not prove anything in 1936 or
anywhere else about general recursive functions.

7Here we follow Gandy 1980 in using appended words or letters to pinpoint the exact version
of Turing’s Thesis proposed. For example, Gandy [1980, p. 124] wrote of “Theorem T. What
can be calculated by an abstract human being working in a routine way is computable,” and
distinguishes it from, “Thesis M. What can be calculated by a machine is computable.” Gandy
goes on to propose his own Thesis P about discrete deterministic mechanical devices (DDMD).
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hyperbolic geometry or Einsteinian physics refutes the laws of Euclidean geometry
or Newtonian physics. Each simply describes a different part of the universe.

Turing machines and Turing’s analysis were enthusiastically accepted by the
founders of the subject, Gödel, Church, and Kleene, as the correct definition of com-
putability. In [193? ]8 [33, p.168] Gödel wrote regarding the formal definitions of
computability, “That this really is the correct definition of mechanical computabil-
ity was established beyond any doubt by Turing.” Gödel left no doubt that he
regarded Turing’s approach as superior to all other previous definitions (including
his own recursive functions) when he wrote in 1964 [11, p. 72, footnote], speaking
of Turing machines, that, “As for previous equivalent definitions of computability,
which, however, are much less suitable for our purpose, see A. Church 1936, pp.
256–358.” (Gödel’s reference is to Church’s Thesis §9 which we have just analyzed
in §2.5.) Kleene wrote [1981b, p. 49], “Turing’s computability is intrinsically persua-
sive” but “λ-definability is not intrinsically persuasive” and “general recursiveness
scarcely so (its author Gödel being at the time not at all persuaded).” Church,
in his review 1937 of Turing 1936, wrote that of the three different notions: com-
putability by a Turing machine, general recursiveness of Herbrand-Gödel-Kleene,
and λ-definability, “The first has the advantage of making the identification with
effectiveness in the ordinary (not explicitly defined) sense evident immediately—i.e.,
without the necessity of proving preliminary theorems.” Most people today accept
Turing’s Thesis. Sieg [1994, p. 96] wrote, “Thus, Turing’s clarification of effective
calculability as calculability by a mechanical computor should be accepted.”

Some have cast doubt on Turing’s Thesis on the grounds that there might be
physical or biological processes which may produce, say, the characteristic func-
tion of the halting problem. It is possible that these may exist (although there
is presently no evidence) but if so, this will have absolutely no effect on Turing’s
Thesis because they will not be algorithmic or mechanical procedures as required
in §2.1 and in Turing’s Thesis. Although suggesting the possibility of noncom-
putational mental processes [33, p. 310], Gödel was unequivocal in his support of
Turing’s Thesis TT-Computor. Regarding the possibility of other nonmechanical
procedures, Gödel 1964 wrote,

Note that the question of whether there exist non-mechanical procedures
not equivalent with any algorithm, has nothing whatsoever to do with
the adequacy of the definition of “formal system” and of “mechanical
procedure.”
—Gödel 1964 [11, p. 72]

8In referencing this paper [193? ] of Gödel we follow the bibliographic referencing and numbering
in his collected papers [33, p.156] where the editors use “[193? ]” and explain, “This article is
taken from handwritten notes in English, evidently for a lecture, found in the Nachlass in a spiral
notebook. Although the date of the piece is not known, some conjectures about this will be
discussed later.”
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3.3 The Church-Turing Thesis as a Definition

When Church 1936 first proposed Church’s Thesis, he thought of it as a definition,
not as a thesis. Church [11, p. 90] wrote, “The purpose of the present paper is to
propose a definition of effective calculability.” Similarly, Turing 1936 did not use the
term “definition,” but he spoke [11, p. 135] of showing “that all computable numbers
are [Turing] ‘computable’, ” and clearly regarded it as the definition of computable.
Gödel stated on several occasions that the correct definition of computability had
unquestionably been achieved by Turing.

. . . one has for the first time succeeded in giving an absolute definition of
an interesting epistemological notion, i.e., one not depending on the for-
malism chosen. . . . For the concept of computability, however, although
it is merely a special kind of demonstrability or decidability, the situa-
tion is different. By a kind of miracle it is not necessary to distinguish
orders, and the diagonal procedure does not lead outside the defined
notion.
—Gödel: 1946 Princeton Bicentennial, [26, p. 84]

The greatest improvement was made possible through the precise defini-
tion of the concept of finite procedure, . . . This concept, . . . is equivalent
to the concept of a “computable function of integers” . . . The most sat-
isfactory way, in my opinion, is that of reducing the concept of finite
procedure to that of a machine with a finite number of parts, as has
been done by the British mathematician Turing.
—-Gödel: Gibbs lecture 1951 [33, pp. 304–305]

But I was completely convinced only by Turing’s paper.
—-Gödel: letter to Kreisel of May 1, 1968 [89, p. 88]

The theses of Church and Turing were not even called “theses” at all until
Kleene [1943, p. 60] referred to Church’s “definition” as “Thesis I,” and then in
1952 Kleene referred to “Church’s Thesis” and “Turing’s Thesis.” What is even
more curious is that the phrase “Church’s Thesis” came to denote also “Turing’s
Thesis” and perhaps others as well, thereby blurring all intensional distinctions.
(This, of course, stems partly from the Recursion Convention in §4.6 that “recur-
sive” denotes “computable,” because under this convention Turing’s Thesis follows
from Church’s Thesis, whereas in reality the reverse was true as seen in §3.1.) There
are many examples of this in the literature. For example, Gandy’s 1980 paper is en-
titled, “Church’s thesis and principles for mechanisms”. However, Gandy’s paper is
entirely about Turing’s Thesis and whether or not certain intuitively defined classes
are Turing computable (i.e., mechanistic), not whether or not they are recursive.
The hypotheses are stated in terms of variants of Turing’s Thesis (TT) such TT-H,
TT-M, TT-DDMD. They are presented both informally and formally entirely in
the language of machines. Gandy’s main result is that what can be calculated by a
discrete deterministic mechanical device (DDMD) is Turing computable.
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In contrast, the distinction of intensional meaning which distinguishes between
Church’s Thesis and Turing’s Thesis is preserved by others, for example Sieg 1994
and Tamburrini 1995, and here. Here we also use the phrase “Church-Turing Thesis
(CTT)” to refer to the amalgamation of the two theses (these and others) where we
identify all the informal concepts of Definition 1.1 with one another and we identify
all the formal concepts of Definition 1.2, and their mathematical equivalents, with
one another and suppress their intensional meanings.

We now propose that Turing’s Thesis be used as a definition of a computable
function as Turing and Gödel suggested. Other theses in the past have dealt with
very problematic topics but have eventually become definitions as we now discuss.

3.4 Other Theses Became Definitions

One senior logician objected to this proposed definition because he said we should
view the Church-Turing Thesis as certainly correct, but as “a one of a kind, with-
out any true analogue in mathematics. I think we recursion theorists should be
proud of this, and not (as you seem to suggest) replace it by a change of our defi-
nitions.” There is no reason why we cannot use Turing’s Thesis as a definition of
computability and still maintain awe and pride at a fundamental discovery. As to
the uniqueness of this discovery in the history of mathematics, it is informative to
consider the history of other “theses.” In the early 1800’s mathematicians were try-
ing to make precise the intuitive notion of a continuous function, namely one with
no breaks. What we might call the “Cauchy-Weierstrass Thesis” asserts that a func-
tion is intuitively continuous iff it satisfies the usual formal δ-ε-definition found in
elementary calculus books. Similarly, what we might call the “Curve Thesis” asserts
that the intuitive notion of the length of a continuous curve in 2-space is captured
by the usual definition as the limit of sums of approximating line segments. The
“Area Thesis” asserts that the area of an appropriate continuous surface in 3-space
is that given by the usual definition of the limit of the sum of the areas of appro-
priate approximating rectangles. These are no longer called theses, rather they are
simply taken as definitions of the underlying intuitive concepts.

The same senior logician argued that these analogies are misleading because
“Only a moment’s thought is needed to see that Weierstrass’ definition is a correct
formulation of the intuitive notion of continuity. However, it takes a lot of thought
to convince oneself that every function which can be computed by an algorithm can
be computed by a Turing machine.”

This impression of the simplicity in verifying the other theses and the belief
in the unique historical place of the Church-Turing Thesis in formally capturing a
difficult intuitive notion seems to ignore the history of the other “theses.” What is
problematic to one generation seems the obvious definition to another. Kline [66,
p. 354] wrote,

“Up to about 1650 no one believed that the length of a curve could equal
exactly the length of a line. In fact, in the second book of La Geometrie,
Descartes says the relation between curved lines and straight lines is not
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nor ever can be known. But Robertval found the length of an arch of
a cycloid. The architect Christopher Wren (1632–1723) rectified the
cycloid . . . Fermat, too, calculated some lengths of curves. These men
usually found the sum of the segments, then let the number of segments
become infinite as each got smaller.”

Kline asserts (p. 355) that finding the lengths of curves was one of “the four major
problems that motivated the work on the calculus.” Regarding the Area Thesis
Kline remarked (p. 355) that during the same period Huygens “was the first to give
results on the areas of surfaces beyond that of the sphere.”

A second distinguished senior logician stated that for him the Curve Thesis
is more difficult to accept than Turing’s Thesis and explained his reasons with
references from Kline. With the Curve Thesis there is no upper bound closing
downward toward the length of the curve, but merely the lower bound of the sum of
the lengths of line segments, which increases with ever finer subdivisions. Likewise,
for the Area Thesis (unlike the area under a curve in 2-space) there is no upper
bound to the area, but merely the sum of the areas of finitely many rectangles
approaching the correct value from below. He notes that in all three cases, the
length of a curve in 2-space, the area of a surface in 3-space, and the set of all
computable functions, there is no upper bound, just a lower bound. Furthermore,
in both the Curve Thesis and Turing’s Thesis one breaks the demonstration into
smaller and smaller pieces until it becomes evident.9

3.5 Register Machines

Closely related to Turing machines is the formalism proposed much later of register
machines by Shepherdson and Sturgis 1963. (See also Cutland 1980, or Shoenfield
1991.) These have the advantage of more closely resembling modern digital com-
puters which manipulate data and instructions stored in various “registers” rather
than having to go back and forth through the data on a single tape. In the version
of Cutland [1980, p. 9] the register machine contains an infinite number of registers
{Rn}n∈ω, each of which contains an integer, rn. The program P is a finite set of
instructions built up from the four basic instructions: zero Z(n) (replace rn by 0),
successor S(n) (replace rn by rn +1), transfer T (m,n) (replace rn by rm), and jump
instructions J(m,n, q) (if rm = rn go to the qth instruction of P , and otherwise go
to the next instruction of P ). It is easily shown that Turing machines can compute
the same class of functions as register machines.

9The second logician pointed out that Kline goes on to say that during the second half of the
17th century various curves were rectified (using essentially the modern definition of arc length).
Kline [p. 107] describes how other axioms involve the lengths of concave curves and surfaces. Kline
tells how Archimedes deals axiomatically with arc length, and describes how Archimedes gave what
can be construed as a proof of the Curve Thesis for certain curves since his axiom gives a way of
handling an upper-bound on the length. The second logician suggested that this is analogous to
Gandy’s proof of TT-DDMD in §3.1, and stated “there is apparently no Gandy-like proof of the
Curve Thesis for arbitrary rectilinear curves; in that case arclength is a definition. On the other
hand there is a Gandy-like proof of Turing’s Thesis for the case of TT-DDMD (namely Gandy’s).”

13



4 Later Developments in Computability

4.1 Kleene’s Normal Form and his µ-Recursive Functions

From 1931 to 1934 Kleene tested many operations on functions to see whether
they preserve λ-definability. Among these was the least number operator, “the
least y such that,” which, since [Kleene, 1938], has been denoted by “µy.” Kleene
proved that if R(x, y) is a λ-definable relation then so is the partial function ψ(x) =
(µy)R(x, y).

Kleene used this to prove his Normal Form Theorem 1936 and 1943 which as-
serts that there is a primitive recursive predicate T (e, x, y) and a primitive recursive
function U(y) such that for any general recursive function ϕ(x), there is an index e
(corresponding to the system E of equations defining ϕ) such that

(2) ϕ(x) = U(µy T (e, x, y)).

(This is the 1943 version. The 1936 version had a U with an additional parameter.)
Kleene’s Normal Form Theorem establishes that every general recursive (partial)
function is µ-recursive, and conversely. Since the application of µ often leads to
only partial functions Kleene 1938 introduced the partial recursive functions, (i.e.,
computable partial functions). The Normal Form Theorem also holds if we replace
total by partial recursive functions. Define the class C to be the smallest class of
partial functions closed under the five schemata for primitive recursion (see §2.2)
and, in addition, the following schema,

Scheme (VI) (Unbounded Search) ϕ(x) = (µy) [g(x, y) = 0],

where g(x, y) ∈ C and g(x, y) is total. Scheme (VI) is also sometimes called “mini-
malization,” or the “least number operator.” Kleene 1952 referred to this C as the
class of (partial) µ-recursive functions (reserving the term “recursive” for Herbrand-
Gödel recursive), and used the term (partial) µ-recursive in later papers such as
1959 and 1963 .

The (partial) µ-recursive functions constitute a robust class and one which plays
a very important role in the subject. For example, by Gödel numbering the con-
figurations of a computation we can easily prove a normal form theorem for the
Turing computable functions (see Soare [1987, p. 15]). The µ-recursive functions
are a mathematically definable class of functions almost independent of syntax and
formalism. They have sometimes been used as the definition of a (partial) recur-
sive function (see the table in §4.6), but when used precisely and by Kleene, the
formal meaning of “recursive” has been “defined by a Herbrand-Gödel system of
equations.”

It has sometimes been erroneously written that an advantage of the formalism
of recursive functions or µ-recursive functions is that one can precisely write down a
proof in either one of the two, but that this would have been infeasible using Turing
machines or λ-definable functions. It is true that the latter two are unsuitable for
writing proofs, but the former two are not much more suitable. Kleene [1981, p. 62]
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wrote, “Under Herbrand-Gödel general recursiveness and my partial recursiveness
adapted from it one works with systems E of equations that can be very unwieldy.”
The general recursive formalism has almost never been used for writing papers,
so the writers are probably using “recursive” to refer to “µ-recursive,” which was
earlier used by Kleene for writing his proofs from 1936 to 1963 and even later, and
by some followers like Sacks in his book 1963 on degrees. These expositions were
extremely difficult to read (not unlike machine code) and were virtually completely
abandoned by the mid 1960’s in favor of the style of Rogers’ book 1967 which
has prevailed in subsequent texts (given in the table in §4.6). This style is to use
rigorous proofs but written in the usual informal mathematical style and usually
based on the formalism of Turing machines or the closely related register machines
to define necessary items such as the number of steps of the computation, the “use
function” measuring the number of oracle squares scanned during a computation,
and so on.

4.2 Computably Enumerable Sets and Post

Since they were motivated by formalizing algorithms and possible decision proce-
dures in connection with Hilbert’s Entscheidungsproblem, the first formalizations
of computability were designed to define a computable function. However, it had
been recognized that effectiveness also occurs with generating objects, such as sets
of formulas. Church, in his paper 1936 [11, p. 96] on Church’s Thesis, introduced
the term “recursively enumerable set” for a set which is the range of a recursive
function as in Definition 1.2. This is apparently the first appearance of the term
“recursively enumerable” in the literature and the first appearance of “recursively”
as an adverb meaning “effectively” or “computably.”

Church goes on to prove in §6 and §8 various theorems and corollaries about
recursively enumerable sets of well-formed formulas. Church also used the term
“effectively enumerable” for the informal concept of a recursively enumerable set
but used the latter for both the informal and formal concepts.

In the same year Kleene 1936 mentioned [11, p. 238] a “recursive enumeration”
and noted that there is no recursive enumeration of Herbrand-Gödel systems of
equations which gives only the systems which define the (total) recursive functions.
By a “recursive enumeration” Kleene states that he means “a recursive sequence
(i.e., the successive values of a recursive function of one variable).” Effectively
enumerable or recursively enumerable sets were not mentioned much thereafter until
Post’s paper 1943 on normal (production) systems which led to generated sets and
then his famous 1944 paper which inaugurated the modern study of computably
enumerable sets.

In the same year as Turing 1936 , Post 1936 independently of Turing (but not
independently of the work by Church and Kleene in Princeton) defined a “finite
combinatory process” which closely resembles a Turing machine. From this it is
often and erroneously written (Kleene [1987b, p. 56] and [1981, p. 61]) that Post’s
contribution here was “essentially the same” as Turing’s, but in fact it was much less.
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Post did not attempt to prove that his formalism coincided with any other such as
general recursiveness but merely expressed the expectation that this would turn out
to be true, while Turing proved the Turing computable functions equivalent to the
λ-definable ones. Post gave no hint of a universal Turing machine. Most important,
Post gave no analysis as did Turing in §3.1 above of why the intuitively computable
functions are computable in his formal system. Post offers only as a “working
hypothesis” that his contemplated “wider and wider formulations” are all “logically
reducible to formulation 1.” Lastly, Post, of course, did not prove the unsolvability
of the Entscheidungsproblem because at the time Post was not aware of Turing’s
paper 1936, and Post believed that Church had settled the Entscheidungsproblem.
(Post may have been aware of the flaw in Church’s Thesis discussed in §2.5, and
perhaps this is why he objected to the use of the term “definition.”)

Later, Post 1941 and 1943 introduced a second and unrelated formalism called
a production system and (in a restricted form) a normal system, which he explained
again in 1944. Post’s (normal) canonical system is a generational system, rather
than a computational system as in general recursive functions or Turing computable
functions, and led Post to concentrate on effectively enumerable sets rather than
computable functions. He showed that every recursively enumerable set is a normal
set (one derived in his normal canonical system) and therefore normal sets are
formally equivalent to recursively enumerable sets. Post, like Church and Turing,
gave a thesis [1943, p. 201] but stated in terms of generated sets and production
systems, which asserted that “any generated set is a normal set.”

Post used the terms “effectively enumerable set” and “generated set” almost
interchangeably, particularly for sets of positive integers. Post [1944, p. 285] (like
Church 1936 ) defined a set of positive integers to be recursively enumerable if it
is the range of a recursive function and then stated, “The corresponding intuitive
concept is that of an effectively enumerable set of positive integers.” Post [1944,
p. 286] explained his informal concept of a “generated set” of positive integers this
way,

“Suffice it to say that each element of the set is at some time written
down, and earmarked as belonging to the set, as a result of predeter-
mined effective processes. It is understood that once an element is placed
in the set, it stays there.”

Post then [p. 286] restated his thesis from 1943 that “every generated set of pos-
itive integers is recursively enumerable,” [the italics are Post’s] and he remarked
that “this may be resolved into the two statements: every generated set is effec-
tively enumerable, every effectively enumerable set of positive integers is recursively
enumerable.” Post continued, “their converses are immediately seen to be true.”

Hence, this amounts to an assertion of the identification (at least extensionally)
of the three concepts. Post accepted the Church-Turing Thesis even though he
was reluctant to call it a definition, as Church and Turing would have done. Post
[1944, p. 307, footnote 4] calls attention to Kleene’s first use [1943, p. 201] of the
word “thesis” in this context, but remarks “We still feel that, ultimately, “Law”
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will best describe the situation,” and Post refers to his 1936 where this term was
first proposed. This suggests that Post perhaps thought of the thesis as a kind of
natural law like the laws of Newtonian physics.

In his famous and very influential paper 1944, Post continued with the intuitive
concepts of “effectively enumerable” and “generated set,” which he explains again
at some length. The formalism Post used was that of his own normal (produc-
tion) system, i.e., “normal set.” He used the term “recursively enumerable set”
(Church’s term from 1936 ) as a name for both his informal “effectively enumerable
set” and for his formal version, “normal set.” However, the concept or formal defi-
nition of “recursive” does not enter Post’s paper at all, only the terms “recursive”
and “recursively enumerable.” Post’s use of the term “recursively enumerable” is
one of several ambiguities in the subject (ambiguous at least from an intensional
viewpoint).

In spite of this ambiguity, Post’s entrance on the scene was fortunate for re-
cursively enumerable sets and for the entire subject. Previously, the papers in
the subject had been written in the very technical formalism of µ-recursive func-
tions (see the last paragraph of §4.1), with little intuition. Recursively enumerable
sets had attracted very little attention since their debut in 1936. Post’s papers
brought excitement, intuitive appeal, and an informal style of proof, much closer
to ordinary mathematical proofs, and represented the real birth of the subject of
recursively enumerable sets 1943 and 1944 and degrees of unsolvability 1948. The
results and machinery they generated (Post’s problem, Friedberg-Muchnik priority
method) not only heavily influenced computability on ω but also provided a goal
for higher excursions such as meta-recursion theory, α-recursion theory, recursion in
higher types, E-recursion theory, and others. These papers of Post stimulated the
entire subject for decades, but unfortunately they simultaneously helped to fix the
use of the terms “recursive” and “recursively enumerable” to acquire the additional
meanings, “computable” and “computably enumerable.”

4.3 History of Relative Computability

The problem of computability of a set A relative to a set B is that of giving an algo-
rithm for answering every question of the form “Is x ∈ A” by a computation which
asks at most finitely many questions of the form “Is y1 ∈ B?,” . . . “Is yk ∈ B?” The
first formal definition of relative computability (also called “relative reducibility”)
was given by Turing [1939, §4], in terms of an “oracle Turing machine.” This is
best visualized as a Turing machine with an extra infinite “oracle tape” on which
is written the characteristic function of B (see Soare [1987, p. 47]). Other formal
definitions were later given by Kleene 1943 and 1952 of a function ϕ being general
recursive in a function ψ if the latter is simply added to the equations E defining
ϕ. Post 1948 formulated another definition by modifying his definition 1943 of a
canonical (production) system. These three definitions can be proved to be equiv-
alent. (See Kleene 1952.) Using Turing reducibility (denoted A ≤T B), we say
that two sets A and B have the same information content or have the same Turing
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degree if A ≤T B and B ≤T A. Post 1948 introduced this extremely influential
concept of Turing degree, also called degree of unsolvability. Kleene and Post 1954
laid the foundation for the abstract structure of the degrees, where there has been
much research ever since.

It is interesting that all but one of the texts from the table in §4.6 use Turing
machines or their variant, register machines, to define A ≤T B, but they apply
the term “recursive in” (rather than “computable in”) to the result. For example,
Shoenfield uses register machines, and his entire apparatus is machine based, as is
all his terminology to formulate the definition. He speaks [p. 40] of an “oracle” for
a function “F” in the sense of Turing, asking for a value “we have computed” to
be used in “the rest of the computation,” “the use of an algorithm,” the “notion
of a program computing a function for this machine,” and the “Φ-machine” (oracle
machine) being “obtained from the basic machine by adding all F -instructions for
all F in Φ.” Yet after all this definitional background which heavily uses both the
formalism and the concepts of machine computation but none of the formalism or
concepts of recursion, Shoenfield concludes with the formal definition , “A function
is recursive relative to Φ if it is computed by some program for the Φ-machine.”
This is typical of most of these references and is another instance where a concept
like computability is used to define a function, but then a different name like “re-
cursion” is assigned afterward even though the concept of recursion is not used in
the definition.

If we replace recursive by computable in results in recursion theory, we
often obtain a statement which is evident, or at least more evident than
the original result.
—-Shoenfield [1995, p. 15]

4.4 Higher Order Computability

Kleene opened the frontiers of computability on higher type objects in a series
of paper first on constructive ordinals and and hierarchies of number-theoretical
predicates10 and later on computability in higher types. Although Kleene calls the
functions here by the word “recursive” he often used concepts of computability to
define, explain, and prove theorems about them. For example, in 1955b Kleene
wrote,

“By general recursive functions (predicates) we mean ones whose values
can be computed (decided) by ideal computing machines not limited in
their space for storing information. A theory of such machines was given
by Turing 1936 and in less detail by Post 1936.”

It is on computability on higher types that the concept of recursion comes into
one of its more splendid realizations. An object of type 0 is a number; an object of

10From this work grew later the very beautiful subject of descriptive set theory, although when
he began Kleene was unaware of the work in classical descriptive set theory from the early 1900’s.

18



type n+ 1 is a mapping from the set of objects of type n into ω. Thus, an object of
type 1 is a real (i.e., identified with a function α from ω to ω). A well-known type
2 object is E where E(α) = 0 if (∃x)[α(x) = 0], and E(α) = 1 otherwise.

In order to formally define computable functions of higher type, Kleene 1959
used a schemata-based definition very much like that for the µ-recursive functions
in §4.1. Kleene began by giving [p. 3] schemata (S1) to (S8) which closely resem-
ble the previous primitive recursive schemata (I)–(V) of §2.2. After proving various
properties about these primitive recursive functions of higher type, Kleene addressed
the general recursive case [§3, p. 10]. Kleene began by talking about Turing oracles
and “computations being carried out by a preassigned procedure.” To obtain the
partial recursive functions Kleene added an additional schema (S9) [p. 13] which
is a kind of enumeration schema and, together with (S1) to (S8), forms a huge
induction. If instead of schema (S9) one adds a schema (S10) which closely resem-
bles the unbounded search schema (VI) of §4.1 then Kleene obtained the “partial
µ-recursive” functions which are a strictly smaller class than the partial recursive
functions (see Kleene §8.4), unlike the ω case where the two classes coincide.

In a later paper Kleene defined his schema (S11): ϕ(θ;−→a ) = ψ(ϕ, θ;−→a ), and he
declared [1987c, p. 358], “This schema gives an absolutely general form of recur-
sion.” Later, in his Ph.D. dissertation, Platek developed very elegant abstract form
of recursion in higher types. For example, if H is finitary operation with certain
properties and and

Fn+1 = H(Fn, x)

then F =
⋃

n∈ω Fn is a fixed point, but is not a recursion on any argument. Some
people have cited this work by Kleene, Platek, and others to prove that in higher
types recursion plays the main role and computability plays very little role if any,
but this is not accurate.

Consider Kleene’s papers 1959 and 1963 laying the foundations for higher types.
Although Kleene used the name recursive for his higher type functions, Kleene
used the concept of computability to explain them and to carry out his proofs.
From the moment Kleene introduced the general recursive case on p. 10 of 1959
he used the concept and terminology of computability, including: “computation,”
“oracle,” “preassigned procedure,” “mechanical character,” and many more. Words
like these, particularly “terminating” or “nonterminating” “computations” occur
on average several times per page throughout the rest of the article. For example,
Kleene showed “how the inductive definition of {z}(−→a ) ' w provides a computation
process,” The “stages” of a computation can be arranged in a tree [p. 22], and
termination or nontermination of a computation along a certain branch of the tree
[p. 32] is crucial to the overall computation. Kleene went on in 1962 and 1962b to
develop what he called “Turing-machine computable functionals of finite types.”

Dag Normann is the author of an authoritative text 1980 on the subject of
recursion on countable functionals. Normann gave a lecture at Oberwolfach in
January, 1996, a main theme of which was that the subject of higher types has
much more to do with computability than with recursion.
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It is fair to say that the subject of higher types represents a very interesting and
beautiful new arena where both the concepts of recursion and computability play a
key role. Kleene’s work and Platek’s have raised the pure concept of recursion to
new heights with unexpected discoveries of new kinds of fixed points. At the same
time motivation and methods have often been those associated with the concept of
computability, suitably generalized. Indeed is there any area of recursion theory
which has been opened merely to study the concepts of self-reference, fixed points,
reflexive call and other aspects of recursion alone with no intent of studying the
effective or computable content of the new area?

4.5 How the Terms Became Fixed

If both Turing and Gödel, the inventors of the two formal definitions and the two
names, preferred the terminology “computable” for this class of functions, how did
the word “recursive” become preferred for it and for the subject? When Turing’s
1939 paper appeared, he had already been recruited by the British government
as a cryptanalyst on September 4, 1939 [43, p. 161], three days after Britain was
plunged into World War II. Turing played the major role [43] in 1940 in breaking the
German cipher, Enigma. After the war Turing worked on the design of high speed
digital computers, first, at the British National Physical Laboratory from 1945 to
1948 and then at the Computing Machine Laboratory in Manchester from 1948
until his death in 1954. Turing wrote a report 1946 [106] on the design of A.C.E.,
a high speed digital computer (partly inspired by his universal Turing machine).
Gödel moved to set theory and proved his famous results about the consistency of
the axiom of choice and the generalized continuum hypothesis which appeared in
1938 and 1939. He returned to computability with his well-known Dialectica paper
1958 in which he speaks of “computable functions of finite type” [32, p. 245]. Gödel
made many statements expressing his preference for “computable” over “recursive”
(see the quotes here from his collected works [31], [32], [33]), but neither Turing nor
Gödel had much influence on the terminology of the subject after 1939.

The present terminology came from Church and Kleene. They had worked in the
λ-definable functions until 1935 when they changed to recursive functions because
it was more in the mathematical mainstream and had more audience appeal, as
explained by Kleene 1987b. They had both committed themselves to the new “re-
cursive” terminology before they ever heard of Turing or his results. Furthermore,
using “computable” in 1935 would not have increased audience appeal because a
“computer” meant, even as late as 1946, a human being calculating with paper.
Ironically, the personal computer revolution of the late 1970’s which brought the
technology, concept and terminology of computability to tens of millions arrived
just as Kleene was retiring.

After 1938 Church had little influence on the subject or its terminology, although
he did produce in the late 1940’s and 1950’s a number of students who later became
quite prominent. Kleene, with his steady stream of papers giving fundamental tools
like the hierarchies, normal form theorems, and recursion theorem (fixed point the-
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orem) and opening new areas, dominated the subject from the late 1930’s until at
least the late 1950’s, and his papers and book 1952 set the standard for the results
and terminology, such as “recursive,” “recursively enumerable,” and “Church’s The-
sis.” Post 1944 changed from his own terminology to that of Church and Kleene in
his use of “recursive” and “recursively enumerable.” The enormous popularity and
influence of Post’s paper and of Post’s Problem firmly and widely established the
Church-Kleene terminology. After the solution to Post’s Problem by Friedberg and
Muchnik in 1956-57 and the introduction of their priority method, the field greatly
expanded, and there was no single dominant figure, but the existing terminology
had been established and has continued to the present day.

4.6 Current Usage of the Concepts and Terms

There is a current tendency in the subject to work in one formalism (usually that of
Turing computable functions) but then to name the results using the terminology
of recursive functions not computable functions. For example, consider from an
intensional viewpoint the following quote from Putnam’s recent review [1995, p. 371]
of Roger Penrose’s new book 1994 11 about “a noncomputational ingredient in our
conscious thinking.”

“First Penrose provides the reader with a proof of a form of the Gödel
Theorem due to Alan Turing, the father of the modern digital computer
and the creator of the mathematical subject recursion theory, which
analyzes what computers can and cannot in principle accomplish.”
—- Hilary Putnam, review of Penrose 1994

There is very good reason to agree with Putnam12 on his two assertions about Tur-
ing. However, Turing certainly never used the term “recursion theory” or “recursive
function theory” for the subject. Turing mentioned the term “recursive function”
only very briefly in 1937b and [1939, §2] to say that these functions were mathe-
matically equivalent to his Turing computable functions, and then Turing dismissed
general recursive functions with the phrase, “we will not be much concerned here
with this particular definition.” Turing certainly never used “recursive” to mean
“computable,” and Turing did not refer to “recursive functions” again. Clearly
from a strictly intensional viewpoint, the term “recursion theory” does not analyze

11Physicist Penrose, like most scientists, never mentions the term “recursive,” but he has an
extensive discussion of Turing and Turing machines covering a whole chapter. Penrose [p. 66]
writes, “by a computation (or algorithm) I indeed mean the action of some Turing machine, i.e.,
in effect, just the operation of a computer according to some computer program.” This is a good
example of the acceptance in the scientific world of Turing’s Thesis. (See §3).

12Putnam’s own article [84] is an excellent example of the modern use of computer related
concepts and terms rather than recursive functions to describe computational processes. Put-
nam’s review (like Penrose’s book) is written entirely using the Turing machine model, speaking
of “machines,” “programs,” “output,” “lines of code,” a “debugged” program, “Turing-machine
action,” and “programs which output theorems.” Putnam uses words like: “computer,” “compu-
tational,” “machine,” and “program” over three dozen times, while “recursion” is mentioned only
once (namely, in the quote above) and “primitive recursive” only once.
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anything about what computers can or cannot accomplish at all (contrary to Put-
nam’s assertion); it deals with the properties of Herbrand-Gödel general recursive
functions, the concepts of induction, recursion, reflexive program calls, and fixed
points.

Gödel, who had invented 1934 the formal definition of general recursive function,
abandoned it almost completely after seeing Turing machines 1936 and Turing’s
demonstration of Turing’s Thesis. After 1936 Gödel rarely spoke of recursive func-
tions, and never used the term “recursive” to mean “computable” or “decidable.”
Gödel often asserted later that Turing’s was the correct definition of the notion of
mechanical computability, and spoke often of the concept of computability 1946
[26, p. 84], 1951 [33, pp. 304–305], 193? [33, p.168], 1968 [89, p. 88], 1936 [11,
p. 82], 1964 [11, p. 71–72].

Both Turing and Gödel, even later in life, rejected “recursive” as a name for
the subject and often for their results. At his lecture 1949 on verifying program
correctness, Turing used the term “induction variable,” to which Prof. Hartree
objected that the term should be “recursive variable” to distinguish it from the
sense of mathematical induction. Turing [102, p. 141] rejected the suggestion. In
the three volumes of his collected works, [31], [32], and [33], Gödel never used
the term “recursive function theory” to name the subject; when others did Gödel
reacted sharply negatively, as related by Martin Davis.

In a discussion with Gödel at the Institute for Advanced Study in Prince-
ton about 1952–54, Martin Davis casually used the term “recursive func-
tion theory” as it was used then. Davis related, “To my surprise, Gödel
reacted sharply, saying that the term in question should be used with
reference to the kind of work Rosza Peter did.”

In spite of the strong preference for “computable” by Turing and Gödel, the
founders of the two formalisms and concepts, the name “recursive” instead of “com-
putable” has been associated with almost all objects of the subject since the late
1930’s. In spite of the computer revolution of the last few decades which Turing’s
work did so much to spawn, and which has given new connections between the sub-
ject and many outside areas in the scientific community, logicians have been slow to
change the terminology and concepts of “recursive” to “computable.” For various
historical reasons there gradually emerged from 1936 to 1960 the following unspo-
ken convention to use “recursive” as an all encompassing term for the concepts and
for the name of the subject.

The Recursion Convention is to: (1) use the terms of the general recursive
formalism (i.e., “recursive,” “recursively enumerable,” “recursive in”) to describe
results about the subject, even if the proofs are based on the concepts and for-
malism of Turing computability; (2) use the term “Church’s Thesis” to denote the
amalgamation of the several theses, including theses by Church, Turing, and Post,
in §2 and §3, even though Church’s demonstration of his thesis (that all effectively
calculable functions are general recursive) was flawed (§2.5) and was rejected by
Gödel in its original form, and even though Turing gave an “unquestionably ade-
quate” [Gödel’s words] demonstration (§3.1) of Turing’s Thesis (that all intuitively
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computable functions are Turing machine computable); (3) name the subject, and
any new excursions such as to higher recursion, using the language of recursion,
even if the concept of computability plays a very strong role there.

The Recursion Convention has been followed for over fifty years. Consider the
following table of the basic texts on the subject, the formalisms that they use to
define computable functions and relative computability, and the names that they
assign afterward.

Here Turing computable and (general) recursive are as in Definition 1.2, register
machines are in §3.5, and µ-recursive in §4.1. Of these texts no modern book (i.e.,
after 1965) uses general recursive functions as the formalism for defining computable
functions; two use µ-recursive functions (which is not the same as general recursive
and was not used by Kleene to define “recursive”) for ordinary computability, but
then one (Lerman) changes to Turing machines for the more complicated case of
relative computability, while the other (Odifreddi) stays with the µ-recursive defini-
tion of relative computability, but then gives a nonstandard proof of results about
relative Turing computability, such as the Friedberg-Muchnik solution to Post’s
Problem. And yet all the authors (omitting Cutland who is writing a more ele-
mentary text for a general audience including computer scientists) use the name
“recursive” for both the intuitive concept and the formally defined object, whether
they have used a computability style definition or not.

Book Defn of Defn of relative Name used
computable computability for fn def’d

———————————————————————————————
Kleene 1952 gen’l recursive gen’l recursive recursive
Rogers 1967 Turing machines Turing machines recursive
Cutland 1980 register machines register machines computable
Lerman 1983 µ-recursive Turing machines recursive
Soare 1987 Turing machines Turing machines recursive
Odifreddi 1989 µ-recursive µ-recursive recursive
Shoenfield 1991 register machines register machines recursive

The Recursion Convention has brought “recursive” to have at least four different
meanings as discussed in §5. This leads to some ambiguity. When a speaker uses the
word “recursive” before a general audience, does he mean “defined by induction,”
“related to fixed points and reflexive program calls,” or does he mean “computable?”

The first rule of good taste in writing is to use words whose meaning
will not be misunderstood; and if a reader does not know the meaning of
the words, it is infinitely better that he should know he does not know
it.
—-Charles Sanders Peirce, Ethics of Terminology, [73, p. 131]

Worse still, the Convention leads to imprecise thinking about the basic concepts
of the subject; the term “recursion” is often used when the concept of “computabil-
ity” is meant. (By the term “recursive function” does the writer mean “inductively
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defined function” or “computable function?”) Furthermore, ambiguous and little
recognized terms and imprecise thinking lead to poor communication both within
the subject and to outsiders, which leads to isolation and lack of progress within
the subject, since progress in science depends on the collaboration of many minds.

5 Mathematical, Scientific, and General English
Usage

The term “computable” appears as early as 1646 in English usage according to
the Oxford English Dictionary (O.E.D.) 1989 [70]. O.E.D. and Webster’s Third
International Dictionary 1993 [108] give the definition of “computable” as roughly
synonymous with “calculable,” capable of being ascertained or determined by a
mathematical process especially of some intricacy. The meaning of “calculate” is
somewhat more general including “to figure out,” “to design or adapt for a pur-
pose,” “to judge to be probable,” while “compute” means more “to determine by a
mathematical process,” or “to determine or calculate by means of a computer.”

When Dedekind 1888 proved that a definition by recursion uniquely defines a
function, he called it “definition by induction.” Hilbert 1904 used the term “rekur-
rent(e),” and in 1923 he used “Rekursion”. The term “recursive” was apparently
first used in English by Ramsey 1928 (see Gandy [21, p. 73]). Skolem in 1923
showed that many number-theoretic functions are primitive recursive, and he used
“rekurrierend.” In 1926 Hilbert expanded the use of the term to include transfinite
types and essentially transfinite recursion. Ackermann 1928 considered functions
which can be defined using primitive recursion at all finite types. He gave a def-
inition of a particular function using double nested recursion and showed that it
was not primitive recursive. R. Péter 1934 and 1951 examined primitive recursive
functions and special recursive functions (where recursion on more than one variable
is allowed).

The current meanings of “recursive” derive from the verb “recur” which means
to return to a place or status, or the concept of “definition by recursion”, like
Scheme (V) in (??), for which Webster gives the meaning: a definition of a function
permitting values of the function to be calculated systematically in a finite number
of steps, especially a mathematical definition in which the first case is given and the
nth case is defined in terms of one or more previous cases, especially the immediately
preceding one. Thus, the term “recursive” is presently used in the subject in at least
four different ways which we now summarize as a definition for future reference.

Definition 5.1 The current meanings of recursive and recursion are these:
(i) recursion is used with meanings derived from the verb “recur,” as in the

dictionary definition of “recursion” above;
(ii) recursion is used in the sense of “definition by recursion” (i.e., definition

by induction) as defined in equation (??) of §2.1 and in the dictionary entry of
definition by recursion above;
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(iii) following Kleene 1936 and Church 1936 the term “recursive” denotes “gen-
eral recursive” and any of its mathematically equivalent formal variants, such as
“Turing computable,” “λ-definable,” “specified by a Post 1944 normal system,” or
Kleene’s “µ-recursive”.

(iv) “recursive” is used to mean any of the informal variants of Definition 1.1
such as “(intuitively) computable,” “effectively calculable,” “defined by a mechan-
ical process,” or “specified by an algorithm.”

Most dictionaries give meaning (i) and usually (ii). Most people outside the
subject including computer scientists, mathematicians, and scientists understand
“recursive” as (ii) if they know it at all. Of the dictionaries only O.E.D. gives
meaning (iii) and then only in the fine print, without a definition, but with reference
to Kleene 1936 and 1952 , an entry written by Gandy. None of these dictionaries
gives meaning (iv) that “recursive” means “computable” or “decidable.” This is a
meaning understood by very few outside the subject.

6 Themes and Goals of Computability Theory

Many believe that the present subject of recursion theory would benefit from: (1)
the pruning of some more technical and specialized topics while retaining most of
the present research content; (2) a broadening of horizons and problems to others
areas in logic, mathematics, computer science, and science in general in interaction
with computability; (3) a better communication of present and future results in
both (1) and (2) in terms of some of the basic concepts below to the larger scientific
community.13 Before presenting his lecture or paper, the author should ask himself,
“What light does this shed on the basic themes and goals of the subject such as
computability, enumerability, information content, relation to other branches of
logic and mathematics?” As Harvey Friedman has suggested, every morning one
should wake up and reflect on the conceptual and foundational significance of one’s
work. This reevaluation process should be carried out regardless of names for the
subject.

The following items should be considered a mixture of concepts, goals, themes,
and connections with other areas: computability; enumerability; relative com-
putability (Turing reducibility, A ≤T B); information content, normally measured
by Turing degree; computational complexity and computing with bounds on re-
sources of space and time; polynomial hierarchy questions; definability; invariance
and automorphisms; elementary theory; relationship of computability, enumerabil-
ity, and information content to algebraic structures; relationship of computability to
model theory, and set theory, and proof theory, for example: models of arithmetic;
provably computable functions, reverse mathematics and levels in the arithmetic
hierarchy; relationship of computability to topology, to algebra and combinatorics,

13Of course, a desire by its proponents to improve a field is not an indication that it is in greater
need of improvement than other fields, but rather indicates the intention to strengthen it still
further.
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to analysis, e.g., to descriptive set theory; relationship to number theory (e.g.,
Hilbert’s 10th Problem); relationship of computability to computer science; Kleene
arithmetic hierarchy and the Meyer-Stockmeyer hierarchy for polynomial reducibil-
ity, structures in complexity; relationship of computability to other fields, e.g.,
biology, quantum physics, economics, etc.

7 Analysis

Both of the concepts of recursion and computability have played a crucial role in
the development of the subject and will continue to do so.

The term and concept of “computable” is associated with the notion of computa-
tion (§2.1), algorithm (§2.3), and with the functions defined by (or sets enumerated
by) Turing machines (§3.1) or register machines (§3.4), and also with relative Turing
computability (§4.3).

The term and concept of “recursive” is associated with: definition by recur-
sion (induction) (§2.2), general recursive functions in the sense in Herbrand-Gödel
(§2.4), fixed points as in the Kleene Recursion Theorem or more generally Kleene’s
schema (S11) (see 1987c), which Kleene believed included all possible recursions,
and Kleene’s µ-recursive functions (§4.1).

Researchers in the subject have recently changed the the name of the subject
from “Recursion Theory” to “Computability Theory” in order to make clear this
distinction. Thus, the term “recursive” no longer carries the additional meaning of
“computable” or “decidable,” as it once did. This reinforces the original meaning
of “recursive” and induction as understood by Dedekind 1888, Peano 1889 and
1891 , Hilbert 1904 and 1926 , Skolem 1923 , Gödel 1931 and 1934, and Péter 1934
and 1951, and by most modern computer scientists, mathematicians, and physical
scientists, and as expanded to fixed points, the recursion theorem, and to other
kinds of recursion by Kleene, Platek, and others.

Presently, if functions are defined, or sets are enumerated, or relative computabil-
ity is defined using Turing machines, register machines, or variants of these (as in
the texts in the table of §4.6 or in the Putnam 1995 review), then the name “com-
putable” rather than “recursive” will be attached to the result, as in Cutland 1980,
Davis 1958, as well as [1] the subtitle of [93] and others.

Thus, the terms “recursive” and “computable” have reacquired their traditional
and original meanings, and those understood by most outsiders (§5). This is in
accord with the usage and opinion of the founders of the two concepts and terms,
Turing and Gödel, both of whom used “computability” in this sense and both of
whom rejected the use of “recursive” to mean computable (§4.6).

This will improve communication with many researchers outside the field. It
will also give a new scientific precision to our discussions within the subject and
will remove various ambiguities mentioned above. (For example, by a “recursive
function” do we mean computable one or one defined by induction?) It will enable
us to speak with greater clarity and precision about our own subject from r.e. sets
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(ála Post §4.2) to computability in higher types where the relative role of the two
concepts has always been controversial, even to the experts (see §4.4).

Researchers will now also distinguish between the intensional meaning of
Church’s Thesis (that all effectively calculable functions are general recursive) ver-
sus that of Turing’s Thesis (that all intuitively computable functions are computable
by a Turing machine). When one writes a paper dealing with which classes of func-
tions are Turing computable (i.e., mechanistic), as in Gandy 1980 and in many
other places, one now refers to “Turing’s Thesis” (as in Sieg 1994 and Tamburrini
1995) not to “Church’s Thesis.”

Philosopher Charles S. Peirce described the importance of language for science
this way.

“the woof and warp of all thought and all research is symbols, and the
life of thought and science is the life inherent in symbols; so that it is
wrong to say that a good language is important to good thought, merely;
for it is of the essence of it.”
—-Charles Sanders Peirce, The Ethics of Terminology, Volume II Ele-
ments of Logic in: [73, p. 129]
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