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ABSTRACT 

 

In conceptual art, the idea is not only starting point 
and motivation for the material work, it is often 
considered the work itself. In algorithmic art, thinking 
the process of generating the image as one instance 
of an entire class of images becomes the decisive 
kernel of the creative work. This is so because the 
generative algorithm is the innovative component of 
the artist's work. We demonstrate this by critically 
looking at attempts to re-construct works of early 
computer art by the re-coding movement. Thinking 
images is not the same as thinking of images. For 
thinking images is the act of preparing precise 
descriptions that control the machinic materialization 
of images. This kind of activity is a case of 
algorithmic thinking which, in turn, has become an 
important general aspect of current society. Art 
education may play an important role in establishing 
concrete connections between open artistic and 
more confined technological ways of thinking when 
thinking progresses algorithmically. 
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1 | INTRODUCTION: A FIRST EXAMPLE [1] 

Without any initial ado, let us immediately engage in 
a little experiment. Take a look at the drawing in 
Figure 1. Imagine you were given the task of finding 
out how it was made. You are told that the drawing 
was done by a drawing machine controlled in its 
movements by a computer program. You are 
requested to come up with such a program that is 
capable of generating drawings of the same kind or 
style. Your code is not required to generate exactly 
the drawing you see in the figure. But there should 
be little doubt that your program, if allowed to keep 
on generating such drawings, one after the other, 
would some day produce almost exactly the given 
drawing. How would you approach this challenge? 

In all likelihood, after a moment of pondering, you 
would say that there are only horizontal and vertical 
line segments.You observe that, at the far left and 
high up, a line is starting. You follow it down until it 
curves to the right in a right angle. You will probably 
find it hard to follow the line much further since you 
lose track of it. But you see other cases of 
sequences of consecutive line segments that may 
produce in your mind the hypothesis that there are 
straight line-segments alternating between 
horizontal and vertical direction, going left or right, 
and up or down. The hypothesis would be a bit 
daring to claim that you really see one line only 
starting at top left, and continuing by taking turns 
between horizontal and vertical lines. You don't see 
where, in the drawing, this game is ending. 
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Figure 1 | Georg Nees: Irrweg 1965. Credit: G. Nees [2] 

 

You feel ready to sit down and write code in a rather 
free symbolic form that you find easy to read. It may 
in a pseudo-code look like the following. 

input countMax; 
randomly choose a point inside the space provided for the image and call it 
"P0"; 
randomly choose a first direction from the two options {vert, hor} and call it "dir"; 
count := 0; 
 
repeat the following until count > countMax: 
{ 

 randomly choose an orientation from the two options {'+', '-'} and call it "or"; 
 randomly choose a length for the next line segment and call it "len"; 
 
 if (dir = hor) do  

{ if (or = '+') do  
{ P1.x := P0.x + len; if (P1.x > right) do { P1.x := right } } 

else do  
{ P1.x := P0.x - len; if (P1.x < left) do { P1.x := left} } 

P1.y := P0.y } 
 else do  

{if (or = '+') do  
{ P1.y := P0.y + len; if (P1.y > down) do { P1.y := down} } 

else do { P1.y := P0.y - len; if (P1.y < up) do { P1.y := up} } 
P1.x := P0.x }; 

draw line-segment from P0 to P1; 
P0 := P1 in coordinates; 
if (dir = vert) do { dir := hor } else do { dir := vert }; 
count := count + 1; 

} 
 

This is an algorithmic description of a line drawing 
characterized by the following features: 

The drawing is made up of one polygon whose 
edges alternate between horizontal and vertical 
direction. Edges are of random length and they stay 
within the given format of the image (whose left and 
right boundaries within a given coordinate system go 
from the x-coordinate "left" to "right"; in the vertical 
direction they extend from "up" to down"). Whether 
the edge goes left or right (and, correspondingly, up 
or down), is decided randomly. The polygon has 
countMax edges. It should be noted that the x-
coordinate runs from left to right whereas the 
direction of y is from top to bottom. 

Even though the description may appear a bit 
cryptic, it should be understood quite easily. We 
understand the individual lines of this description if 
we know precisely what must be done to generate 
the drawing. We may not yet know what must be 
done in order to make sense of the several 
appearances of the words "randomly choose ...". 
This part is still open and must be described before 
we accept the above as an algorithmic description. 
The symbol ":=" stands for the operation "the 
variable on the left of ':=' takes on the value that the 
expression to the right of ':=' evaluates to". This 
symbol is called the assignment operator. Its 
function is to assign a new value to a variable.  

Algorithms are descriptions of calculations, and such 
calculations are organized in sequences of discrete 
steps of simpler calculations. Each calculatory step 
changes in a precise and unambiguous way the 
state of at least one of the variables of the algorithm. 
Ultimately, assignment operations are responsible 
for such state changes. Therefore, the assignment is 
the most basic in all algorithmic descriptions. 

Our example is an algorithmic description because it 
is of finite length, it is unambiguous, and it is 
effective. A few conventions must be added to make 
the description unambiguous and effective. The 
property of being effective means that in each case 
of interpreting the individual statements that 
constitute the description, the interpretation must 
end in operations whose meaning is already known 
in each and every detail. In the end, a machine must 
be available that can carry out the description.   

To many of our readers this exercise may be pretty 
boring and trivial. We have started the exercise from 
one of the first examples of generative art (often 
called "computer art"), i.e. from a given visual object. 
This object is trivial enough so that we could easily 



 

suggest simple operations of which we are intuitively 
certain that, if carried out truthfully following the 
description and nothing else, they are capable of 
generating drawings of the kind displayed in Figure 
1. Even more: We claim that our description is 
capable of generating all those drawings, their entire 
class. 

This is a most important aspect of algorithmic art. 
This kind of artistic activity is interested in classes of 
images, i.e. in infinite sets of images! The individual 
image is reduced to an instance only of the class it 
belongs to. We may like or dislike one or the other of 
the productions resulting from executing an image 
generating algorithm. That's nice and justified but – 
we are inclined to say – it is no longer at the center 
of the aesthetics of this kind of art.  

We don't want to be misunderstood: Like you, we 
have our taste, and prefer some image over another 
one. Such emotional or otherways founded 
judgements are okay and will stay with us. Our point, 
however, is the shift from the individual and isolated 
image to the infinitely many images. With algorithmic 
art, a new relation between us, the appreciators, and 
them, the works, was born. Questions can now be 
raised like: Are all instances of a class of images of 
high interest? Do most of them arouse deep feelings 
of pleasure or beauty? Under which settings of the 
controlling parameters does the algorithm generate 
works of high quality? And for which of these 
settings is this not the case? If we are capable of 
answering such questions, we will come up with 
statements about good style. Such statements 
would, most likely, be possible only by experiment. 

 

2 | A SECOND EXAMPLE 

The heading of this essay contains a provocation: 
"think the image!" As if this were not outrageous 
enough, it contradicts explcitly what we would 
usually think: Images are to be made, drawn, 
painted, otherwise implanted or embedded into or 
onto a material. Yes, it is true: as long as we accept 
something to be an image only if it is an entity to be 
sensually perceived, it must exist in material form. 
So, thinking the image sounds like a stupid request. 

But be aware of conceptual art! Concept was, of 
course, always already part of the artistic process 
and practice that artists, to a lower or higher degree, 
are concerned with in sketching, experimenting, 

modelling, trying, repeating, revising, versioning, in 
short, with conceptualizing the work of their concern. 
With exception of a few cases, an artist is concerned 
with taking practical steps to get closer to realizing 
his intuition, his imagination, her intention, her 
fantasies, etc. When in conceptual art the concept 
itself was pushed up to the primary concern of an 
artist, this was an interesting further step in 
deconstructing the work of art. Sol LeWitt, in 1967, 
gave the formula: "The idea becomes a machine 
that makes the art." (LeWitt, 1967) 

We do not know whether LeWitt was aware of the 
fact that two years earlier the first exhibitions had 
been shown of art that came out of the machine 
(Georg Nees, A. Michael Noll, Frieder Nake). If not, 
someone should have written to him: you are right, 
and it is happening already! But such detail is not 
important nor interesting. In historic perspective, it is 
all the same. The idea of thinking the image 
emerges at different places. At some places only as 
a nice, surprising phrase, at others in actual artistic 
practice. Thinking the image, however, in a 
radicalized form, becomes necessary in algorithmic 
art. Developing an algorithm for the production of 
just one image would be stupid and crazy. Thinking 
the image leads to thinking sets of images. 

The style an artist finally discovers to be the style 
that he or she, from now on, will be using and 
varying over and over again, the break-through that 
they have been waiting and working hard for, is of 
utmost importance in the course of art, in the 
unfolding of history of art. The style appears in one 
after the other work in high times of an artist's art. In 
the style, the artist expresses his or her thinking of 
images. So thinking the image has a long tradition 
and is, during the twentieth century, a major force 
propelling artistic processes. It is only consequential 
that around the middle of the century, this thinking 
the image was singled out as the creative approach 
to the world of images for the second half of that 
century and into the next. Thinking the image is the 
ontology of imagery in postmodern times. The 
material image is added as a sentimental reminis-
cence to comfort our dreary senses. The senses 
need to be nourished by the material image because 
we are not brains, much more we are bodies. 

When Descartes said, "I think therefore I am", we 
would be liars if we continued by saying, "I think the 
image, therefore I see it". Only vis-à-vis the extreme 
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semiotic machinery (digital computers) the request 
becomes possible to think the image. It becomes 
necessary at the same time. 

But let us take up a second example (cf. Figure 2)! It 
is not too hard to convince ourselves of this line 
drawing being a polygon, again. A polygon is 
represented as a finite sequence of points. A 
polygon as an object of drawing is a specialized 
visual interpretation of such a sequence of points. 
The interpretation consists of straight line-segments 
from the first point to the second, from there to the 
third, etc. The polygon is closed, if the last point is 
connected back to the first. 

 

Figure 2 | A. Michael Noll: Gaussian Quadratic. 1963/1965.  
Credit: A.M. Noll [3] 

 

An algorithmic description of the class of all open 
and closed polygons is easy to sketch. In this 
sketch, the variable "close" must be set to the value 
"true" if a closed polygon is to be generated. 
Otherwse, it must have the value "false". As before, 
the value of "countMax" is the number of edges in 
the case of an open polygon. The closed polygon 
has one additional edge. So here is the algorithmic 
description in the same sort of formal writing. 

 

input the value of countMax; input the value of close; 
randomly choose a point inside the image frame and call it "P0"; 
Pold := P0; 
count := 0; 

repeat the following until count = countMax: 
{ 

randomly choose the x-coordinate of the next point, according to function 
nextX, and call it Pnew.x; 
randomly choose the y-coordinate of the next point, according to function 
nextY, and call it Pnew.y; 
draw straight line from Pold to Pnew; 
Pold := Pnew; 
count := count +1; 

} 
if (close) do { draw straight line from Pnew to P0 }; 
 
 

The interesting part of this description are the two 
lines that are responsible for determining the x- and 
y-coordinates of the next point, called Pnew. Two 
functions are mentioned that are obviously decisive 
for what is going to happen, heavily determining the 
visual appearance of the polygonal drawing: the 
functions nextX and nextY. 

That choice can be done by actually fixing the 
coordinates of a next point somewhere inside the 
image format. A different kind of determining that 
point is to choose a direction, and a length along 
that direction. This choice can be made in a 
deterministic or probabilistic way. The probabilistic 
choice is one where the new value is drawn from 
some given interval, according to some probability 
distribution. If the interval to choose from has length 
0, it is a deterministic choice. The kind of probability 
distribution has a strong influence on the shape of 
the polygon. Our first example above had some 
deterministic part (the alternating directions of 
vertical and horizontal). Other components of the 
choice were of probabilistic nature. 

Michael Noll's polygon (Figure 2) indicates in its title 
a bit of what distinguishes the drawing from others – 
a practice often used in the fine arts. Noll called the 
drawing, "Gaussian quadratic". From this name, we 
may expect that one of the two coordinates is 
distributed according to a Gaussian distribution. It is 
actually the horizontal x-coordinate. The other 
coordinate is to progress according to a quadratic 
equation. (Noll, 1994) Noll did not publish more 
detail about this progression in vertical direction. We 
see that the line is mirrored back to the bottom 
boundary whenever the y-coordinate reaches the 
top.  

In neither example, we have said anything about the 
graphics. Our discussion was confined to the 
geometric aspects alone. Geometry, however, is 
abstract. Thus, it is not visible. A geometric line is an 



 

ideal object of the mind. It is not a stroke executed 
on paper by use of a pencil or any other drawing 
tool. Only when we add graphic parameters to the 
geometric objects, does the drawing appear as a 
visible object. So the two examples above must be 
amended by parameters like the width and color of 
the lines, perhaps also a deliberate visual emphasis 
on the points, changes of the values of graphic 
parameters along the edges, textures of the line 
segments and more. 

3 | RE-CODING 

Coding is the activity of describing an algorithm in 
the form required by some programming language 
such that the compiler or interpreter of the chosen 
language can deal with it. Re-coding must then be 
the activity of trying to re-construct the code of a 
drawing – in the case where drawings are the results 
of machinic calculations (that's our case). 

The situation is simple and clear. We are given a 
drawing. Perhaps there are more than only one 
drawing. We know, or assume, they are results of 
executing a computer program. But we don't have a 
clue of the program itself; at any rate, it is not 
available to us. In the case of several given 
drawings, we assume they came from the same 
program. In such a situation, our task is: Design 
code that is capable of generating images similar to 
the given images, plus any number of more. 

We are not interested in copying the given images. 
We say the task is solved, if the new code generates 
images that come close enough to the given ones. 
Images must not coincide in each and every detail. It 
suffices if a person, comparing the given to the re-
coded images, concludes that the two evidently 
belong to the same class of images, in which ever 
way that class would be defined. Intuitively, we 
seem to be capable of judging quite well such vague 
kinds of similarity. 

We cannot hope for more than such class-similarity 
in re-coding. If we define the task more strictly by 
requesting that one of the re-coded images be equal 
in all its detail to the given one, we could always 
provide a trivial re-coding: scan the given image, 
store it, and output it upon request. If not only one, 
but several images were given at the start, the trivial 
code would have to be slightly more complex. We 
would scan all the given ones, store them, and 

prepare code containing a switch that randomly 
selects and outputs one of the stored cases.  

We conclude that the task of re-coding always 
allows for a super-trivial solution that is not based on 
constructive code. The trivial new coding, in fact, 
evades the problem of coding altogether. An 
acceptable solution of the re-coding problem 
requires that the new image be constructed in such 
a way that the new encoding requires a good 
measure of similarity between the given sample of 
results from the unknown program and the output of 
the new code. To solve this task, we must carry out 
an analysis of basic elements, structures and 
superstructures, measurements, and other analytic 
investigation of the given sample. The job of re-
tracing an unknown algorithm of generative art 
surprisingly puts us into the situation of an extremely 
accurate analysis of works of art. 

In tasks of re-coding, we see a good chance for 
introducing generative art into art education. We see 
chances for school kids, students, and adults to 
engage in both, artistic and algorithmic, activities 
offering new and rewarding experiences. Such 
activities may have the potential of helping us to 
remain true human beings whilst the environment 
around us is accelerating the digital race. We see 
chances for slow lingering against fast glimpsing. 

In the fall of 2012, the US-American "creative 
technologist" (as he called himself), Matthew Epler, 
came up with the idea of re-coding works of early 
algorithmic art. Epler considers himself a person 
"specializing in creating one of-a-kind interactive 
projects" (Epler, w.d.). On the website of his 
ReCode Project (meanwhile largely abandoned) he 
wrote: 

"The ReCode Project is a community-driven 
effort to preserve computer art by translating it 
into a modern programming language 
(Processing). … The focus of the ReCode 
Project is three-fold: 

1. Bring historic works of computer art 
back into the public eye. 

2. Make it accessible and useable. 

3. Save the code." (Epler, 2013) 
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Not much later, British artist Mark Webster 
suggested to Epler to organize a series of events, 
including the idea of cities declaring themselves to 
become ProcessingCities [4]. Whereas Epler 
concentrated on his website inviting people to re-
code early computer art, Webster wanted people to 
connect in actual spaces experiencing aspects of art 
history in a new way by learning from pioneers. It 
seems that besides a challenging but quite limited 
re-coding workshop and lecture in 2013 in 
Bordeaux, France, not much has actually happened. 
As far as we know, there are hardly any publications 
about the approach, and after a series of rather 
trivial re-codings of computer-generated images 
taken from Grace Hertlein's short-lived magazine 
Computer Graphics and Art (Hertlein, 1976-1978) 
nothing tangible seems to have come from the idea. 

The very idea of re-coding, however, caught on in 
our research group at the University of Bremen in 
Germany. Perhaps different from the original 
intentions, and not without critical analysis of the 
potentials of the approach, we have over a number 
of years gathered a fair amount of hands-on 
experience in study projects of re-coding. As part of 
our long-term project on algorithmic art [5], we have 
offered several seminars and workshops for 
individual re-coding efforts of various kinds. So even 
if Matthew Epler's first impulse was met by only little 
resonance, via Mark Webster's French connection 
the idea of re-coding fell on fertile ground in the 
North of Germany. 

4 | TWO MORE EXAMPLES 

The idea of re-coding has strong limitations. The two 
examples we have used for the purpose of 
demonstration are extremely simple. Even though 
the drawings contain areas of densely packed 
intersections of lines, where it is almost impossible 
to successfully discern the exact paths of criss-
crossing lines, we were able to come up with highly 
probable correct hypotheses.  

Such a situation is, however, exceptional and very 
soon the complexity of a set of images gets so high 
that only by accident or by great expert experience 
in a certain field of scientific and artistic decision-
making is there any chance to re-code the original 
algorithm. Based on Figures 3 and 4, we will indicate 
cases of almost impossible tasks of re-coding.  

Saying something is impossible, is dangerous. Why 
should not someone of advanced background in 
algorithmic art appear who, given enough time, 
would eventually find the level of analysis where our 
claim of unbreakability breaks down? We want to 
indicate this level in the case of Figure 3. 

 

Figure 3. Frieder Nake: Abteiberg Walk through Raster, 2005 

 

Let us make explicit a few characteristics of the 
image of Figure 3, and also pose questions that 
must be answered if we want to stand a realistic 
chance of re-coding the drawing. We easily discover 
horizontal and vertical bars of black, blue, and 
yellow color. They are of varying line-width and 
length. We see empty spaces between the bars, 
irregularly distributed, as it seems. An enlarged ver-
sion of the image would help to measure the lengths 
and widths and, thereby, come up with a description 
of the set of elementary signs used for the image. 
Some initial insight is possible. 

But what about the areas where the black color 
almost disappears to make room for the blue and 
yellow strokes? What are shape characteristics of 
that area? Assuming from earlier experience that 
this kind of algorithmic art is likely to be based on 
some kind of randomness, and knowing that ran-
domness comes in many varieties according to 
probability distributions of many kinds and para-
meter settings, we may generate conjectures. But 
how to test them in an attempt to get closer to a 
convincing re-coding? Is there a definite borderline 
to the somehow curvingly-shaped inner area of blue 



 

and yellow? Once in a while, we still see a bit of 
black but the two black and not-black areas are hard 
to delineate. If geometry doesn't help the analysis, 
what else can we try? 

We have reason to assume that without help from 
outside, perhaps from the artist himself who – 
thinking the image and not making it – made use of 
something that defies re-discovery unless an 
accidental flash of thought comes to rescue. In order 
to offer such a flash, who of our readers would have 
assumed that the image was first generated as a 
Markov chain with non-stationary transition 
probabilities? It was then mapped from the linear 
chain onto the planar area by a space-filling method. 
Did your thinking go in this direction? 

Our claim is that it is extremely unlikely that this kind 
of conjecture emerges in one of the observers. The 
hint of "Markov chain" will, in the mathematically 
educated generate some inkling of "Aha!". But such 
a mind would still need to do a lot of analysis to 
solve the riddle in a way that would allow us to 
accept the new code as a re-coding. We may be 
inclined to conclude, that the task is, under most 
circumstances, too complex to solve. 

It is definitely too complex to solve if we are given 
only one image to start with. The situation may 
change mildly if we start from ten or twenty images 
that the original program has generated. The larger 
the sample is, and the more advanced our analytical 
tools are – themselves given as software –, the 
higher our chances for a decent re-coding. This 
would tend to become a case of big data! 

The program behind Figure 3 was called Walk-
through-raster. According to the non-stationary 
transition probabilities and one of several modes of 
mapping a chain onto the plane, an arbitrarily given 
repertoire of signs is distributed into the cells of a 
grid. The algorithm, by its rather strong local control 
is capable of letting emerge global structural or 
compositional features. We believe, this was, fifty 
years ago, a remarkable discovery. 

Casey Reas' image of Figure 4  is another example 
beyond the simplistic assumptions of naive re-
coding. Without clues from the artist, no analyst has 
a chance to re-code it. We do know that there is an 
algorithm behind the visual appearance. But, in this 
case, to come up with at least a description of 
events that may happen (the image is taken from a 

dynamic installation) appears much too complex. 
We may admire what we see but to say precisely 
why we admire it, seems beyond our imagination. 
Remember: If our descriptions are to be turned into 
algorithmic form, they must satisfy hard 
requirements.  

 

Figure 4. Casey Reas: Process 14 (Software 3) 2012.  
Credit: C. Reas 

We hope to have now indicated the extremes (of 
trivial and impossible), between which a kind of new 
approach to art education may be tried. Neither the 
trivial nor the (almost) unattainable are interesting 
for educational purposes. Interesting is the possible, 
the challenging but realistic. That's the middle 
ground between the extremes. 

5 | ALGOTHMIC THINKING 

Like all others animals, humans engage in 
purposeful activities most of their lives. A very 
special of our activities is happening without much of 
other movement: Thinking, reflecting. We can see a 
person sitting somewhere without speaking, not 
moving arms nor legs, silently looking in one 
direction without showing signs of bodily 
engagement, perhaps even with eyes closed – in 
short, a symbol of high concentration. He or she, we 
may conclude, is thinking. If our ordinary activities 
are oriented towards changing something in the 
outside environment around us and if we call these 
external activities, our internal activities are oriented 
towards changing something inside. We may say, 
they change our inner state. 

Of course, those two modes of activity cannot be 
strictly separated. In reality, they are interlinked and 
interwoven. For analytical purposes, however, 
separating is justified. Separation permits us to say 
that internal thinking takes as its subject matter an 
external operation. An individual's thinking is 
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reflecting an other. The other may be the thinker, or 
an operation by the thinker. 

For practical reasons, we distinguish various kinds 
of thinking: Speculative thinking, logical thinking, 
associative thinking, and more. Each one of those is 
a reduction of thinking to a special subject matter or 
a special manner of thinking. When we speculate, 
we allow ourselves to think of everything only 
loosely connected to the current subject matter, or 
not connected to it at all. In speculating, we allow 
ourselves to leave behind what we wanted to 
concentrate on, often together with others. 

In logical thinking we allow for progression from one 
statement to the next only by obeying a set of rather 
strict rules that control sequences of interconnected 
statements to be made in such a manner that all 
those participating in the activity agree on the 
conclusion derived from one or several of the 
already established propositions. To say that a 
conclusion was erroneous, in the case of logical 
progression, amounts to the proof that a derivation 
did not obey the agreed-upon rules. In logical 
thinking, a maximum of non-subjectivity is achieved. 

In associative thinking, the connection between one 
or several already established statements and a 
next statement is much looser. Statements in a 
sequence of statements are connected (and, thus, 
build a derivation or progression of thought) by some 
common words or feelings or subjective experience, 
often quite close to speculation. Whereas in 
speculation each and every neighborhood is 
permitted in a chain of thought, in association a 
vague kind of aesthetics is allowed. 

Here, our interest is algorithmic thinking. It is a way 
of thinking towards algorithms and in algorithms, or 
in statements and formulations that satisfy the rigor 
of precision, clarity, operability, and unambiguity. 
Algorithmic and logical thinking are close relatives of 
each other. Algorithmic thinking is even stricter than 
logical thinking insofar as all final consequences in 
algorithmic thinking must be operational. That is, it 
must be possible to carry out by machine the final 
operations. 

The particular kind of machine, its details of 
operation (the operating system's and programming 
languages' intricacies) are of no avail. In algorithmic 
thinking, we are not thinking of programs, but of 
algorithms. Algorithms are the abstract forms of 

programs. But the two are, of course, very close to 
each other. Somebody may be a good algorithmic 
thinker without being a good programmer. But it is 
unlikely that he or she would not digress into a bit of 
programming just to see whether an algorithmic 
formulation would survive the purgatory of a 
concrete computer. 

The result of an effort in algorithmic thinking is an 
algorithmic system. As such, it is in all its aspects 
unambiguous. This amounts to saying, there is one 
and only one interpretation of each execution of the 
algorithmic system. The result of such an execution 
may be interpreted differently by the human 
witnesses, of course. But those humans embed the 
algorithm's result into their contexts, immediately 
and by necessity. By doing so, the humans interpret 
in their ways, namely according to their interests, 
intentions, etc. The machine, when executing the 
algorithmic operation, has only one context: the 
context of computability. Between two interventions 
by the human ("interactive acts") everything is 
computable and, thus, does not allow for different 
interpretationss. 

So algorithmic thinking is a way of thinking by 
humans who are in full command of all their incre-
dibly rich powers of interpretation. However, in the 
course of its happening, such a thinking must narrow 
down everything to uniquely and precisely 
interpretable actions. Algorithmic thinking is thus a 
kind of thinking that requires of the human an 
approach and attitude that is non-human. 
Algorithmic thinking is deeply heroic because it 
demands of the semiotic animal (the human) to 
prepare for the semiotic machine (the computer) to 
take over, and this taking-over can successfully be 
prepared only if the human reduces all his or her 
capabilities to the trivial. 

We may describe the human's task in thinking 
algorithmically by a sequence of three reductions. 
Whatever the process and phenomenon may be that 
a group of humans are considering worthwile to be 
redone in an algorithmic way, they must do this:  

1. reduce the worldly process to semiotic 
aspects, 

2. reduce the semiotics to syntactics only, 
3. reduce the syntactics to computability only. 



 

6 | ART EDUCATION AND THE ALGORITHMIC 
DIMENSION 

The algorithmic dimension of a phenomenon is all 
that pertains to the phenomenon under considera-
tion when we reduce events, things, and processes 
to their algorithmic components, aspects, features, 
characteristics, etc. We enter the algorithmic 
dimension when we strictly reduce thinking to its 
algorithmic forms. In a strict sense, none of us can 
do this. But we are pragmatic enough to know that, 
in any real-world activity and contemplation, we can 
easily jump back- and forward between certain sets 
of restrictions that we impose on our activity. We 
may say that, when thinking algorithmically, we 
inhabit the algorithmic dimension of the world. We 
have described how this is a domain in the world of 
unambiguity, of one and only one interpretation, of 
the reduction of rich human capacities to poor 
machinic capacities. [6] 

How different from art that is! Can we imagine a 
greater difference than that – between the infinitely 
open space of interpreting and doing anything in the 
artistic domain, and the poor one-and-only-one 
interpretation that the machine requires, by the very 
fact of being a machine, if we want to use it in an 
interesting, new, exciting, extravagant, arousing, 
beautiful, surprising,heavenly or devilish manner! 

There is, we claim, no greater difference. And yet, 
we know, that exactly this is happening: the im-
possible meeting of always only one interpretation 
on one side, and infinitely many interpretations on 
the other. People now usually call this enormous 
revolution the Digital Revolution, and they speak of 
what is happening as the process of digitization. We 
prefer the term Algorithmic Revolution. For, what is 
happening is characterized much better by 
processes of reducing anything in society to 
computable, i.e. algorithmic, form. The fact that this 
takes place by all objects being coded in digital 
ways, is only accidental and not really worth mentio-
ning. The belitteling of the computability reduction as 
a digital encoding thus appears as an ideological 
attack against an enlightening critique. 

Art is enlightening, often in the most literal sense. Art 
education – as a stream of educational efforts 
towards free and open judgement beyond immediate 
interest – requires awareness and practice of 
enlightened critique. 

Art education in postmodern times, in times of the 
agorithmic revolution, in times of permanent 
accessibility and ubiqitous surveillance, in times 
when the individual disappears behind a permanent 
flow of data from all of his or her innocent and 
everyday activities, the transformation of the human 
being into a source of data – art education in such 
times should and can be taken up as interruption 
and intervention. Art always disrupts and disturbs, at 
least this was the case during the twentieth century. 
That century ended in a close connection between 
human and machine by the machine's transforma-
tions into automaton, tool, and medium. The three 
capacities of computability, interactivity, and 
connectivity stand for these three ontological modes 
of the semiotic machine. 

 

Figure 5. Manfred Mohr: A formal language (P-49), 1970. 
Credit: V&A Museum London 

 

Works of art are complex signs, open for never 
ending chains of interpretation, open for the three 
ontological aspects of the machine. Outside of the 
realms of affirmative action, there is only the realm 
of art where the human can still unfold his or her 
genuinely human capacities freely and critically. We 
are all responsible to contribute to this. 
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Figure 6. Students analyzing Mohr's "A formal language". 
University of Bremen 2012 

7 | CONCLUDING REMARK 

We have come to regard all entities that algorithmic 
processes get hold of as algorithmic signs. (Nake, 
2004) Following Charles Sanders Peirce, the sign is 
a first (the representamen) standing for a second 
(the object) by virtue of, or creating, a third (the 
interpretant). (Peirce, 1992) The interpretant is the 
result of an act of interpretation; that is interpreting 
("making sense of") an encounter of a perceivable 
occurence of a something (representing) and some 
other (represented). The interpretant is itself a sign 
so that Peirce's concept of sign and semiotic 
processes is in itself recursive. This makes it the 
most prominent concept of our times. 

We have extended the Peircean concept of sign a 
bit by considering sign processes between com-
puters and humans, between semiotic machines and 
semiotic animals. The first, the machine, is an 
interpreter that cannot really interpret, since its 
interpretation is not characterized as open according 
to contexts, but rather restricted to the only context 
of computability. Thus the machine's interpretant is 
really a determinant: the result of the computable 
kind of interpretation that must determine the one 
and only one meaning that a piece of code can have 
if it is correct code. 

The algorithmic sign thus, additionally to Peirce's 
sign, contains another component, the determined 
interpretant. It makes sense to call the old interpre-
tant, generated or given by a human, the intuitive or 
intentional interpretant. 

Instead of "algorithmic sign", we also use the 
metaphor of an inseparable union of surface and 
subface. (Nake, 2008) According to it, anything on a 
computer must be characterized as a pair of surface 

and subface. The surface is for the human to 
perceive by one or several of the senses; the 
subface is for the computer to manipulate by one or 
several algorithms. What is happening on a 
computer is a permanent switching between those 
two. But the human is usually aware of only the 
surface processes, the computer is only aware (if it 
could be "aware" of anything) of the subface 
processes. 

A programmer, and any other person doing some-
thing involving periods of computation, engages in 
such complex processes. The programmer is 
preparing subfaces for other persons later percei-
ving surfaces. In contemporary processes of art 
education, teachers and students have a chance to 
better become aware of what is happening in the 
algorithmic dimension by preparing subfaces that 
will later generate surfaces of aesthetic qualities. 
This is new. It is essential. It can be done, and is a 
bridge between science and art. 

 

ENDNOTES 

[1] This paper is a completely new version of our 
earlier paper Grabowski & Nake (2017). 

[2] Georg Nees was the first to exhibit computer-
generated and automatically drawn graphic works. 
This show was put up in rooms of the Studien-
Galerie of the Stuttgart Institute of Technology 
(today: University of Stuttgart) from 5 to 19 
February, 1965. For the occasion, Max Bense wrote 
his paper, "Projekte generativer Ästhetik" (Bense & 
Nees, 1965). Nees later became the first to do a 
doctoral thesis on computer art (Nees, 1969). 

[3] The second exhibition of so-called computer art 
took place at the then famous avantgarde Howard 
Wise Gallery in New York City. It was dedicated to 
works by A. Michael Noll and Bela Julesz, both from 
Bell Laboratories in Murray Hill, NJ. It was on display 
from 6 to 24 April, 1965. 

[4] The term "Processing" here refers to the 
programming system of Processing (Reas & Fry, 
2014) 

[5] The roots of a series of projects under the title of 
"compArt" reach back to the earliest experiments of 
algorithmic art in the mid-1960s. 



 

[6] Figure 5 shows an early computer-generated 
picture by Manfred Mohr, and Figure 6 is taken from 
students engaged in analyses of Moohr's piece. 
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